Abstract
Photocatalytic optical fibers are promising materials for degrading organic pollutants in wastewater, owing to their low light mass transfer resistance, their high efficiency of light utilization, and their inhibition of photocatalyst deactivation. In particular, optical fibers have been applied for the removal of phenols, dyes, organic acids and antibiotics in wastewater. Yet, optical fibers have limitations such as poor photocatalytic activity and low sustainability. Here, we review the principle and use of photocatalytic optical fibers, including photocatalytic quartz and plastic optical fibers, for the degradation of the organic pollutants in water. We present methods to enhance photocatalytic activity, light utilization efficiency, and adhesion strength by using TiO2-based photocatalytic coatings.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ajmal A, Majeed I, Malik RN, Idriss H, Nadeem MA (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv 4(70):37003–37026. https://doi.org/10.1002/chin.201448247
Barton I, Matejec V, Matousek J (2016) Photocatalytic activity of nanostructured TiO2 coating on glass slides and optical fibers for methylene blue or methyl orange decomposition under different light excitation. J Photochem Photobiol A 317:72–80. https://doi.org/10.1016/j.jphotochem.2015.11.009
Bauer R, Waldner G, Fallmann H, Hager S, Klare M, Krutzler T, Malato S, Maletzky P (1999) The photo-fenton reaction and the TiO2/UV process for waste water treatment− novel developments. Catal Today 53(1):131–144. https://doi.org/10.1016/S0920-5861(99)00108-X
Chen CJ, Wu CC, Tsieh LT, Chen KC (2019) Treatment of trichloroethylene with photocatalyst-coated optical fiber. Water 11(11):2391. https://doi.org/10.3390/w11112391
Chen XB, Liu L, Yu PY, Mao Y (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750. https://doi.org/10.1126/science.1200448
Cheng FY, Lin GM, Hu XL, Xi SB, Xie K (2019) Porous single-crystalline titanium dioxide at 2 cm scale delivering enhanced photoelectrochemical performance. Nat Commun 10(1):1–9. https://doi.org/10.1038/s41467-019-11623-w
Choi W, Ko JY, Park H, Chung JS (2001) Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone. Appl Catal B-Environ 31(3):209–220. https://doi.org/10.1016/S0926-3373(00)00281-2
Choi YS, Kim BW (2000) Photocatalytic disinfection of E coli in a UV/TiO2-immobilised optical-fibre reactor. J Chem Technol Biotechnol 75(12):1145–1150. https://doi.org/10.1002/1097-4660(200012)75:12%3c1145::AID-JCTB341%3e3.0.CO;2-X
Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17:145–155. https://doi.org/10.1007/s10311-018-0785-9
Crini G, Lichtfouse E, Wilson LD, Morin-Crini N (2019) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17:195–213. https://doi.org/10.1007/s10311-018-0786-8
Danion A, Disdier J, Guillard C, Abdelmalek F, Jaffrezic-Renault N (2004a) Characterization and study of a single-TiO2-coated optical fiber reactor. Appl Catal B-Environ 52(3):213–223. https://doi.org/10.1016/j.apcatb.2004.04.005
Danion A, Bordes C, Disdier J, Gauvrit JY, Guillard C, Lantéri P, Jaffrezic-Renault N (2004b) Optimization of a single TiO2-coated optical fiber reactor using experimental design. J Photochem Photobiol A 168(3):161–167. https://doi.org/10.1016/j.jphotochem.2004.03.002
Danion A, Disdier J, Guillard C, Païssé O, Jaffrezic-Renault N (2006) Photocatalytic degradation of imidazolinone fungicide in TiO2-coated optical fiber reactor. Appl Catal B-Environ 62(3–4):274–281. https://doi.org/10.1016/j.apcatb.2005.08.008
Danion A, Disdier J, Guillard C, Jaffrezic-Renault N (2007) Malic acid photocatalytic degradation using a TiO2-coated optical fiber reactor. J Photochem Photobiol A 190(1):135–140. https://doi.org/10.1016/j.jphotochem.2007.03.022
Dawson P, Romanowski M (2018) Excitation modulation of upconversion nanoparticles for switch-like control of ultraviolet luminescence. J Am Chem Soc 140(17):5714–5718. https://doi.org/10.1021/jacs.7b13677
Deng HM, Wang C, Cai WJ, Liu Y, Zhang LX (2020) Managing the water-energy-food nexus in China by adjusting critical final demands and supply chains: An input-output analysis. Sci Total Environ 720:137–635. https://doi.org/10.1016/j.scitotenv.2020.137635
Gavrilescu M, Demnerová K, Aamand J, Agathos S, Fava F (2015) Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol 32(1):147–156. https://doi.org/10.1016/j.nbt.2014.01.001
He C, Gu LP, Xu ZX, He H, Fu G, Han FX, Huang B, Pan XJ (2020) Cleaning chromium pollution in aquatic environments by bioremediation, photocatalytic remediation, electrochemical remediation and coupled remediation systems. Environ Chem Lett 18:561–576. https://doi.org/10.1007/s10311-019-00960-3
Herrmann JM (1995) Heterogeneous photocatalysis: an emerging discipline involving multiphase systems. Catal Today 24(1–2):157–164. https://doi.org/10.1016/0920-5861(95)00005-Z
Hofstadler K, Bauer R, Novalic S, Heisler G (1994) New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on fused-silica glass fibers: photomineralization of 4-chlorophenol. Environ Sci Technol 28(4):670–674. https://doi.org/10.1021/es00053a021
Hu JT, Gao QH, Xu L, Wang ML, Zhang MJ, Zhang K, Liu WH, Wu GZ (2018) Functionalization of cotton fabrics with highly durable polysiloxane–TiO2 hybrid layers: potential applications for photo-induced water–oil separation, UV shielding, and self-cleaning. J Mater Chem A 6:6085–6095. https://doi.org/10.1039/C7TA11231A
Hu Y, Xu JJ, Yuan CW, Lin J, Yin ZD (2005) A single TiO2-coated side-glowing optical fiber for photocatalytic wastewater treatment. Sci Bull 50(18):1979–1984. https://doi.org/10.1007/BF03322787
Indermühle C, Puzenat E, Dappozze F, Simonet F, Lamaa L, Peruchon L, Brochier C, Guillard C (2018) Photocatalytic activity of titania deposited on luminous textiles for water treatment. J Photochem Photobiol A 361:67–75. https://doi.org/10.1016/j.jphotochem.2018.04.047
Isnaeni VA, Arutanti Q, Sustini E, Aliah H, Khairurrijal K, Abdullah M (2013) A novel system for producing photocatalytic titanium dioxide-coated fibers for decomposing organic pollutants in water. Environ Prog Sustain 32(1):42–51. https://doi.org/10.1002/ep.10596
Jafarzadeh NK, Sharifnia S, Hosseini SN, Rahimpour F (2011) Statistical optimization of process conditions for photocatalytic degradation of phenol with immobilization of nano TiO2 on perlite granules. Korean J Chem Eng 28(2):531–538. https://doi.org/10.1007/s11814-010-0355-8
Ji ZX, Callahan DM, Ismail MN, Warzywoda J, Sacco A (2011) Development and characterization of a titanosilicate ETS-10-coated optical fiber reactor towards the photodegradation of methylene blue. J Photochem Photobiol A 217(1):22–28. https://doi.org/10.1016/j.jphotochem.2010.09.011
Joo H, Jeong H, Jeon M, Moon II (2003) The use of plastic optical fibers in photocatalysis of trichloroethylene. Sol Energy Mater Sol Cells 79(1):93–101. https://doi.org/10.1016/S0927-0248(02)00372-0
Katz A, Shon HK, Chekli L, Kim JH (2019) TiO2-coated optical fibres for groundwater remediation. J Nanosci Nanotechno 19(2):1086–1089. https://doi.org/10.1166/jnn.2019.15970
Kim S, Kim M, Lim SK, Park Y (2017) Titania-coated plastic optical fiber fabrics for remote photocatalytic degradation of aqueous pollutants. J Environ Chem Eng 5(2):1899–1905. https://doi.org/10.1016/j.jece.2017.03.036
Li DD, Wang LL, Zhang GJ (2013) A photocatalytic reactor derived from microstructured polymer optical fiber preform. Opt Commun 286:182–186. https://doi.org/10.1016/j.optcom.2012.08.092
Li J, Yang YJ (2018) Optical fiber-based in situ spectroscopic characterization of supported TiO2 in photocatalytic dye degradation. Mater Res Express 5(1):015010. https://doi.org/10.1088/2053-1591/aa9eee
Li WW, Yu HQ, Rittmann BE (2015) Chemistry: reuse water pollutants. Nature 528(7580):29–31. https://doi.org/10.1038/528029a
Li YY, Peng YK, Hu LS, Zheng JW, Prabhakaran D, Wu S, Puchtler TJ, Li M, Wong KY, Taylor RA, Tsang SCE (2019) Photocatalytic water splitting by N-TiO2 on MgO (111) with exceptional quantum efficiencies at elevated temperatures. Nat Commun 10(1):1–9. https://doi.org/10.1038/s41467-019-12385-1
Lin HF, Valsaraj KT (2005) Development of an optical fiber monolith reactor for photocatalytic wastewater treatment. J Appl Electrochem 35(7–8):699–708. https://doi.org/10.1007/s10800-005-1364-x
Lin HF, Valsaraj KT (2006) An optical fiber monolith reactor for photocatalytic wastewater treatment. AIChE J 52(6):2271–2280. https://doi.org/10.1002/aic.10823
Lin L, Wang HY, Luo HM, Xu P (2015) Enhanced photocatalysis using side-glowing optical fibers coated with Fe-doped TiO2 nanocomposite thin films. J Photochem Photobiol A 307:88–98. https://doi.org/10.1016/j.jphotochem.2015.04.010
Lin L, Wang HY, Luo HM, Xu P (2016) Photocatalytic treatment of desalination concentrate using optical fibers coated with nanostructured thin films: impact of water chemistry and seasonal climate variations. Photochem Photobiol 92(3):379–387. https://doi.org/10.1111/php.12589
Lin L, Wang HY, Jiang WB, Mkaouar AR, Xu P (2017) Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers. J Hazard Mater 333:162–168. https://doi.org/10.1016/j.jhazmat.2017.02.044
Ling L, Tugaoen H, Brame J, Sinha S, Li CH, Schoepf J, Hristovski K, Kim JH, Shang C, Westerhoff P (2017) Coupling light emitting diodes with photocatalyst-coated optical fibers improves quantum yield of pollutant oxidation. Environ Sci Technol 51(22):13319–13326. https://doi.org/10.1021/acs.est.7b03454
Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10(12):911–921. https://doi.org/10.1038/nmat3151
Liu J, Han L, An N, Xing L, Ma HY, Cheng L, Yang JC, Zhang QC (2017a) Enhanced visible-light photocatalytic activity of carbonate-doped anatase TiO2 based on the electron-withdrawing bidentate carboxylate linkage. Appl Catal B-Environ 202:642–652. https://doi.org/10.1016/j.apcatb.2016.09.057
Liu YJ, Lu YQ, Yang XS, Zheng XL, Wen SH, Wang F, Vidal X, Zhao JB, Liu DM, Zhou ZG, Ma CS, Zhou JJ, Piper JA, Xi P, Jin DY (2017b) Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543(7644):229–233. https://doi.org/10.1038/nature21366
Louangsouphom B, Wang XJ, Song JK, Wang X (2019) Low-temperature preparation of a N-TiO2/macroporous resin photocatalyst to degrade organic pollutants. Environ Chem Lett 17:1061–1066. https://doi.org/10.1007/s10311-018-00827-z
Luo SJ, Van-Ooij WJ (2002) Surface modification of textile fibers for improvement of adhesion to polymeric matrices: a review. J Adhes Sci Technol 16(13):1715–1735. https://doi.org/10.1163/156856102320396102
Madima N, Mishra SB, Mishra II, AK, (2020) Carbon-based nanomaterials for remediation of organic and inorganic pollutants from wastewater. A review Environ Chem Lett 18:1169–1191. https://doi.org/10.1007/s10311-020-01001-0
Marinangeli RE, Ollis DF (1977) Photoassisted heterogeneous catalysis with optical fibers: I. Isolated single fiber AIChe J 23(4):415–426. https://doi.org/10.1002/aic.690230403
Matsunaga T, Yamaoka H, Ohtani S, Harada Y, Fujii T, Ishikawa T (2008) High photocatalytic activity of palladium-deposited mesoporous TiO2/SiO2 fibers. Appl Catal A 351(2):231–238. https://doi.org/10.1016/j.apcata.2008.09.020
Mecha AC, Chollom MN (2020) Photocatalytic ozonation of wastewater: a review. Environ Chem Lett 18:1491–1507. https://doi.org/10.1007/s10311-020-01020-x
Miller LW, Anderson MA (1998) Fiber-mediated titanium dioxide photocatalysis. J Adv Oxid Technol 3(3):238–242. https://doi.org/10.1515/jaots-1998-0307
Moreira NFF, Sampaio MJ, Ribeiro AR, Silva CG, Faria JL, Silva AMT (2019) Metal-free g-C3N4 photocatalysis of organic micropollutants in urban wastewater under visible light. Appl Catal B-Environ 248:184–192. https://doi.org/10.1016/j.apcatb.2019.02.001
Mudhoo A, Paliya S, Goswami P, Singh M, Lofrano G, Carotenuto M, Carraturo F, Libralato G, Guida M, Usman M, Kumar S (2020) Fabrication, functionalization and performance of doped photocatalysts for dye degradation and mineralization: a review. Environ Chem Lett 18:1825–1903. https://doi.org/10.1007/s10311-020-01045-2
Murgolo S, Franz S, Arab H, Bestetti M, Falletta E, Mascolo G (2019) Degradation of emerging organic pollutants in wastewater effluents by electrochemical photocatalysis on nanostructured TiO2 meshes. Water Res 164:114–290. https://doi.org/10.1016/j.watres.2019.114920
Nithya R, Sivasankari C, Thirunavukkarasu A (2020) Electronic waste generation, regulation and metal recovery: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01111-9
Pan L, Ai MH, Huang CY, Yin L, Liu X, Zhang RR, Wang SB, Jiang Z, Zhang XW, Zhou JJ, Mi WB (2020) Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nat Commun 11(1):1–9. https://doi.org/10.1038/s41467-020-14333-w
Patra A, Friend CS, Kapoor R, Prasad PN (2003) Fluorescence upconversion properties of Er3+-doped TiO2 and BaTiO3 nanocrystallites. Chem Mater 15(19):3650–3655. https://doi.org/10.1021/cm020897u
Peill NJ, Hoffmann MR (1995) Development and optimization of a TiO2-coated fiber-optic cable reactor: photocatalytic degradation of 4-chlorophenol. Environ Sci Technol 29(12):2974–2981. https://doi.org/10.1021/es00012a013
Peill NJ, Hoffmann MR (1996) Chemical and physical characterization of a Tio2-coated fiber optic cable reactor. Environ Sci Technol 30(9):2806–2812. https://doi.org/10.1021/es960047d
Peill NJ, Hoffmann MR (1997) Solar-powered photocatalytic fiber-optic cable reactor for waste stream remediation. J Sol Energy Eng 119(3):229–236. https://doi.org/10.1115/1.2888024
Peill NJ, Bourne L, Hoffmann MR (1997) Iron (III)-doped Q-sized TiO2 coatings in a fiber-optic cable photochemical reactor. J Photochem Photobiol A 108(2–3):221–228. https://doi.org/10.1016/S1010-6030(97)00018-X
Piaskowski K, Świderska-Dąbrowska R, Zarzycki PK (2018) Dye removal from water and wastewater using various physical, chemical, and biological processes. J AOAC Int 101(5):1371–1384. https://doi.org/10.5740/jaoacint.18-0051
Saravanan A, Kumar PS, Vo DVN, Yaashikaa PR, Karishma S, Jeevanantham S, Gayathri B, Bharathi VD (2020a) Photocatalysis for removal of environmental pollutants and fuel production: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01077-8
Saravanan A, Kumar PS, Hemavathy RV, Jeevanantham S, Kamalesh R, Sneha S, Yaashikaa PR (2020b) Methods of detection of food-borne pathogens: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01072-z
Sharma VK, Jinadatha C, Lichtfouse E (2020) Environmental chemistry is most relevant to study coronavirus pandemics. Environ Chem Lett 18:993–996. https://doi.org/10.1007/s10311-020-01017-6
Shi H, Ni J, Zheng T, Wang X, Wang Q (2019) Remediation of wastewater contaminated by antibiotics, a review. Environ Chem Lett 18(2):345–360. https://doi.org/10.1007/s10311-019-00945-2
Simas A, Mores R, Steffens J, Dallago RM, Kunz A, Michelon W, Fongaro G, Viancelli A (2019) Electrodisinfection of real swine wastewater for water reuse. Environ Chem Lett 17:495–499. https://doi.org/10.1007/s10311-018-0782-z
Teixeira S, Magalhães B, Martins PM, Kühn K, Soler L, Lanceros-Méndez S, Cuniberti G (2018) Reusable photocatalytic optical fibers for underground, deep-sea, and turbid water remediation. Glob Chall 2(3):1700124. https://doi.org/10.1002/gch2.201700124
Tugaoen HON, Garcia-Segura S, Hristovski K, Westerhoff P (2018) Compact light-emitting diode optical fiber immobilized TiO2 reactor for photocatalytic water treatment. Sci Total Environ 613:1331–1338. https://doi.org/10.1016/j.scitotenv.2017.09.242
Ullah S, Ferreira-Neto EP, Hazra C, Parveen R, Rojas-Mantilla HD, Calegaro ML, Serge-Correales YE, Rodrigues-Filho UP, Ribeiro SJL (2019) Broad spectrum photocatalytic system based on BiVO4 and NaYbF4:Tm3+ upconversion particles for environmental remediation under UV-visible-NIR illumination. Appl Catal B-Environ 243:121–135. https://doi.org/10.1016/j.apcatb.2018.09.091
Wang PH, Zhou T, Wang R, Lim TT (2011) Carbon-sensitized and nitrogen-doped TiO2 for photocatalytic degradation of sulfanilamide under visible-light irradiation. Water Res 45(16):5015–5026. https://doi.org/10.1016/j.watres.2011.07.002
Wang W, Ding MY, Lu CH, Ni YR, Xu ZZ (2014a) A study on upconversion UV–vis–NIR responsive photocatalytic activity and mechanisms of hexagonal phase NaYF4: Yb3+, Tm3+@TiO2 core–shell structured photocatalyst. Appl Catal B-Environ 144:379–385. https://doi.org/10.1016/j.apcatb.2013.07.035
Wang XH, Liu HL, Zhang WX, Cheng WZ, Liu X, Like XM, Wu JH (2014b) Synthesis and characterization of polymer-coated AgZnO nanoparticles with enhanced photocatalytic activity. RSC Adv 4(83):44011–44017. https://doi.org/10.1039/C4RA09382H
Wu TT, Niu P, Yang YQ, Yin LC, Tan J, Zhu HZ, Irvine JTS, Wang LZ, Liu G, Cheng HM (2019) Homogeneous doping of substitutional nitrogen/carbon in TiO2 plates for visible light photocatalytic water oxidation. Adv Funct Mater 29(25):1901943. https://doi.org/10.1002/adfm.201901943
Xu JJ, Ao YH, Fu DG, Lin J, Lin YH, Shen XW, Yuan CW, Yin ZD (2008) Photocatalytic activity on TiO2-coated side-glowing optical fiber reactor under solar light. J Photochem Photobiol A 199(2–3):165–169. https://doi.org/10.1016/j.jphotochem.2008.05.019
Yang J, Cao Y, Zhang N (2020) Color-mixing effects of photosensitive organic dyes initiated by superoxide anion radicals under visible-light irradiation. Environ Chem Lett 18:2127–2132. https://doi.org/10.1007/s10311-020-01043-4
Zhang SQ, Chen L, Liu HB, Guo W, Yang YX, Guo YH, Huo MX (2012) Design of H3PW12O40/TiO2 and Ag/H3PW12O40/TiO2 film-coated optical fiber photoreactor for the degradation of aqueous rhodamine B and 4-nitrophenol under simulated sunlight irradiation. Chem Eng J 200:300–309. https://doi.org/10.1016/j.cej.2012.06.060
Zhong NB, Liao Q, Zhu S, Zhao MF, Huang Y, Chen R (2015) Temperature-independent polymer optical fiber evanescent wave sensor. Sci Rep 5:11508. https://doi.org/10.1038/srep11508
Zhong NB, Chen M, Chang HX, Zhang TH, Wang ZK, Xin X (2018) Optic fiber with Er3+: YAlO3/SiO2/TiO2 coating and polymer membrane for selective detection of phenol in water. Sens Actuators B 273:1744–1753. https://doi.org/10.1016/j.snb.2018.07.092
Zhong NB, Chen M, Luo YH, Wang ZK, Xin X, Rittmann BE (2019a) A novel photocatalytic optical hollow-fiber with high photocatalytic activity for enhancement of 4-chlorophenol degradation. Chem Eng J 355:731–739. https://doi.org/10.1016/j.cej.2018.08.167
Zhong NB, Chen M, Wang ZK, Zhong DJ, Chang HX, Zhao MF, Xu YL, Li M (2019b) A highly sensitive photocatalytic plastic optic-fiber sensor for selective detection of phenol in aqueous solutions. Sens Actuators B 285:341–349. https://doi.org/10.1016/j.snb.2019.01.042
Acknowledgements
The authors gratefully acknowledge the support received from the National Natural Science Foundation of China (NSFC) (51876018, 51806026), Scientific and Technological Research Program, Chongqing Municipal Education Commission Foundation (KJQN201801117), Postgraduate Research Innovation Project of Chongqing University of Technology (ycx20192047), and Postgraduate Research Innovation Project of Chongqing (CYS18309, CYS19318).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
There are no conflicts of interest to declare.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wu, Y., Zhong, L., Yuan, J. et al. Photocatalytic optical fibers for degradation of organic pollutants in wastewater: a review. Environ Chem Lett 19, 1335–1346 (2021). https://doi.org/10.1007/s10311-020-01141-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10311-020-01141-3