[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Validation tests of an improved kernel density estimation method for identifying disease clusters

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

The spatial filter method, which belongs to the class of kernel density estimation methods, has been used to make morbidity and mortality maps in several recent studies. We propose improvements in the method to include spatially adaptive filters to achieve constant standard error of the relative risk estimates; a staircase weight method for weighting observations to reduce estimation bias; and a parameter selection tool to enhance disease cluster detection performance, measured by sensitivity, specificity, and false discovery rate. We test the performance of the method using Monte Carlo simulations of hypothetical disease clusters over a test area of four counties in Iowa. The simulations include different types of spatial disease patterns and high-resolution population distribution data. Results confirm that the new features of the spatial filter method do substantially improve its performance in realistic situations comparable to those where the method is likely to be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Anselin L (1995) Local indicators of spatial association–LISA. Geogr Anal 27(2):93–115

    Article  Google Scholar 

  • Assunçao R, Costa M, Tavares A, Ferreira S (2006) Fast detection of arbitrarily shaped disease clusters. Stat Med 25(5):723–742

    Article  Google Scholar 

  • Bell BS, Hoskins RE, Pickle LW, Wartenberg D (2006) Current practices in spatial analysis of cancer data: mapping health statistics to inform policymakers and the public. Int J Health Geogr 5:49

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57(1):289–300

    Google Scholar 

  • Bhaduri B, Bright E, Coleman P, Dobson J (2002) LandScan: locating people is what matters. Geoinformatics 5(2):34–37

    Google Scholar 

  • Bhaduri B, Bright E, Coleman P, Urban M (2007) LandScan USA: a high-resolution geospatial and temporal modeling approach for population distribution and dynamics. GeoJournal 69(1):103–117

    Article  Google Scholar 

  • Bithell JF (1990) An application of density estimation to geographical epidemiology. Stat Med 9(6):691–701

    Article  Google Scholar 

  • Boulos MN (2005) Web GIS in practice III: creating a simple interactive map of England’s strategic health authorities using google maps api, google earth kml, and msn virtual earth map control. Int J Health Geogr 4:22

    Article  Google Scholar 

  • Cai Q, Rushton G, Bhaduri B, Bright E, Coleman P (2006) A methodology for estimating small-area population by age and sex based on methods of spatial interpolation and statistical Inference. Trans GIS 10(4):577–598

    Article  Google Scholar 

  • Castro MC, Singer B (2006) Controlling the false discovery rate: a new application to account for multiple and dependent tests in local statistics of spatial association. Geogr Anal 38(2):180–208

    Article  Google Scholar 

  • Cliff A, Haggett P (1988) Atlas of disease distributions: analytic approaches to epidemiological data. Oxford, Blackwell

    Google Scholar 

  • Davies TM, Hazelton ML (2010) Adaptive kernel estimation of spatial relative risk. Stat Med 29(23):2423–2437

    Google Scholar 

  • French JL, Wand MP (2004) Generalized additive models for cancer mapping with incomplete covariates. Biostatistics 5(2):177–191

    Article  Google Scholar 

  • Gelman A, Price PN (1999) All maps of parameter estimates are misleading. Stat Med 18(23):3221–3234

    Article  Google Scholar 

  • Gelman A, Price PN, Lin CY (2000) A method for quantifying artifacts in mapping methods illustrated by application to headbanging. Stat Med 19(17):2309–2320

    Article  Google Scholar 

  • Getis A, Ord KJ (1996) Local spatial statistics: an overview. In: Longley P, Batty M (eds) Spatial analysis: modelling in a GIS environment. Wiley, New York, pp 261–277

    Google Scholar 

  • Getis A, Ord KJ (2000) Seemingly independent tests: addressing the problem of multiple simultaneous and dependent tests. 39th Annual Meeting of the Western Regional Science Association, Kauai, Hawaii

  • Goovaerts P, Jacquez GM (2004) Accounting for regional background and population size in the detection of spatial clusters and outliers using geostatistical filtering and spatial neutral models: the case of lung cancer in Long Island, New York. Int J Health Geogr 3:14

    Article  Google Scholar 

  • Goovaerts P, Jacquez GM (2005) Detection of temporal changes in the spatial distribution of cancer rates using local Moran’s I and geostatistically simulated spatial neutral models. J Geograph Syst 7(1):137–159

    Article  Google Scholar 

  • Hansen KM (1991) Headbanging: robust smoothing in the plane. IEEE Trans Geosci Remote Sens 29(3):369–378

    Article  Google Scholar 

  • Kafadar K (1997) Geographic trends in prostate cancer mortality: an application of spatial smoothers and the need for adjustment. Ann Epidemiol 7(1):35–45

    Article  Google Scholar 

  • Kulldorff M (1997) A spatial scan statistic. Commun Stat Theor M 26(6):1481–1496

    Article  Google Scholar 

  • Lawson AB (2001) An introductory guide to disease mapping. Wiley, New York

    Book  Google Scholar 

  • Lawson AB, Biggeri AB, Boehning D, Lesaffre E, Viel JF, Clark A, Schlattmann P, Divino F (2000) Disease mapping models: an empirical evaluation disease mapping collaborative group. Stat Med 19(17):2217–2241

    Article  Google Scholar 

  • Mollié A (1996) Bayesian mapping of disease. In: Gilks WR, Richardson S, Spiegelhalter DJ (eds) Markov chain monte carlo in practice. Chapman & Hall, New York, pp 360–379

    Google Scholar 

  • Oden N (1995) Adjusting Moran’s I for population density. Stat Med 14(1):17–26

    Article  Google Scholar 

  • Openshaw S (1984) The modifiable areal unit problem. Geobooks, Norwich

    Google Scholar 

  • Openshaw S, Charlton ME, Wymer C, Craft A (1987) A mark I geographical analysis machine for the automated analysis of point data sets. Int J Geogr Info Sys 1(4):335–358

    Article  Google Scholar 

  • Ozdenerol E, Williams BL, Kang SY, Magsumbol MS (2005) Comparison of spatial scan statistic and spatial filter in estimating low birth weight clusters. Int J Health Geogr 4:19

    Article  Google Scholar 

  • Richardson S, Thomson A, Best N, Elliott P (2004) Interpreting posterior relative risk estimates in disease-mapping studies. Environ Health Perspect 112(9):1016–1025

    Article  Google Scholar 

  • Rushton G (2003) Public health, GIS, and spatial analytic tools. Annu Rev Public Health 24(1):43–56

    Article  Google Scholar 

  • Rushton G, Lolonis P (1996) Exploratory spatial analysis of birth defect rates in an urban population. Stat Med 15(7):717–726

    Article  Google Scholar 

  • Shi X (2009) A geocomputational process for characterizing the spatial pattern of lung cancer incidence in New Hampshire. Ann Assoc Am Geogr 99(3):521–533

    Article  Google Scholar 

  • Shi X, Duell E, Demidenko E, Onega T, Wilson B, Hoftiezer D (2007) A polygon-based locally-weighted-average method for smoothing disease rates of small units. Epidemiology 18(5):523–528

    Article  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis. Chapman & Hall, London

    Google Scholar 

  • Talbot TO, Kulldorff M, Forand SP, Haley VB (2000) Evaluation of spatial filters to create smoothed maps of health data. Stat Med 19(17):2399–2408

    Article  Google Scholar 

  • Tiwari C, Rushton G (2004) Using spatial adaptive filters to map late-stage colorectal cancer incidence in Iowa. In: Fisher P (ed) Advances in spatial data handling II. Springer, Berlin, Heidelberg, New York, pp 125–136

    Google Scholar 

  • Tobler W (1970) A computer movie simulating urban growth in the detroit region. Econ Geogr 46(Suppl):234–240

    Article  Google Scholar 

  • Turnbull BW, Iwano EJ, Burnett WS, Howe HL, Clark LC (1990) Monitoring for clusters of disease: application to leukemia incidence in upstate New York. Am J Epidemiol 132(1 Suppl):S136–S143

    Google Scholar 

  • Waller L, Gotway CA (2004) Applied spatial statistics for public health data. Wiley, New York

    Book  Google Scholar 

  • Waller L, Jacquez GM (1995) Disease models implicit in statistical tests of disease clustering. Epidemiology 6(6):584–590

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely thank the editor and the two anonymous reviewers for their many constructive comments and suggestions. Rushton and Cai acknowledge support from the National Cancer Institute Grant #N01-PC-31543.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Cai or Gerard Rushton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Q., Rushton, G. & Bhaduri, B. Validation tests of an improved kernel density estimation method for identifying disease clusters. J Geogr Syst 14, 243–264 (2012). https://doi.org/10.1007/s10109-010-0146-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-010-0146-0

Keywords

JEL Classification

Navigation