[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Domain adaption based on source dictionary regularized RKHS subspace learning

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Domain adaption is to transform the source and target domain data into a certain space through a certain transformation, so that the probability distribution of the transformed data is as close as possible. The domain adaption algorithm based on Maximum Mean Difference (MMD) Maximization and Reproducing Kernel Hilbert Space (RKHS) subspace transformation is the current main algorithm for domain adaption, in which the RKHS subspace transformation is determined by MMD of the transformed source and target domain data. However, MMD has inherent defects in theory. The probability distributions of two different random variables will not change after subtracting their respective mean values, but their MMD becomes zero. A reasonable method should be that the MMD of the source and target domain data with the same label should be as small as possible after RKHS subspace transformation. However, the labels of target domain data are unknown and there is no way to model according to this criterion. In this paper, a domain adaption algorithm based on source dictionary regularized RKHS subspace learning is proposed, in which the source domain data are used as a dictionary, and the target domain data are approximated by the sparse coding of the dictionary. That is to say, in the process of RKHS subspace transformation, the target domain data are distributed around the mostly relevant source domain data. In this way, the proposed algorithm indirectly achieves the MMD of the source and target domain data with the same label after RKHS subspace transformation. So far there has been no similar work reported in the published academic papers. The experimental results presented in this paper show that the proposed algorithm outperforms 5 other state-of-the-art domain adaption algorithms on 5 commonly used datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Article  Google Scholar 

  2. Jiang M, Huang Z, Qiu L et al (2018) Transfer learning-based dynamic multiobjective optimization algorithms. IEEE Trans Evol Comput 22(4):501–514

    Article  Google Scholar 

  3. Xu Y, Fang X, Wu J et al (2016) Discriminative transfer subspace learning via low-rank and sparse representation. IEEE Trans Image Process 25(2):850–863

    Article  MathSciNet  Google Scholar 

  4. Saenko K, Kulis B, Frita M, Darrell T (2010) Adapting visual categorymodels to new domains, in Proc. Eur. Conf. Comput. Vis., pp. 213–226

  5. Pan SJ, Tsang IW, Kwok JT, Yang Q (2011) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22(2):199–210

    Article  Google Scholar 

  6. Duan L, Tsang IW, Xu D, Maybank SJ (2009) Domain transfer SVM for video concept detection, In: CVPR, pp. 1375–1381

  7. Pan SJ, Kwok JT, Yang Q (2008) Transfer learning via dimensionality reduction. AAAI 8:677–682

    Google Scholar 

  8. Duan L, Xu D, Tsang IW, Learning with augmented features for heterogeneous domain adaptation, [Online]. Available: arXiv:abs/1206.4660

  9. Yao T, Pan Y, Ngo C-W, Li H, Mei T (2015) Semi-supervised domain adaptation with subspace learning for visual recognition. in ICCV, pp. 2142–2150

  10. Li Y, Liu J, Lu H, Ma S (2014) Learning robust face representation with classwise block-diagonal structure. IEEE Trans Inf Forens Secur 9(12):2051–2062

    Article  Google Scholar 

  11. Li L, Zhang Z (2019) Semi-supervised domain adaptation by covariance matching. IEEE Trans Neural Netw Learn Syst 41(11):2724–2739

    Google Scholar 

  12. Long M, Wang J, Ding G, Sun J, Yu PS (2014) Transfer joint matching for unsupervised domain adaptation. In: CVPR, pp. 1410–1417

  13. Baktashmotlagh M, Harandi MT, Lovell BC, Salzmann M (2014) Domain adaptation on the statistical manifold. In: CVPR, pp. 2481-2488

  14. Long M, Zhu H, Wang J, Jordan MI (2016) Unsupervised domain adaptation with residual transfer networks. In: NIPS, pp. 136-144

  15. Pan SJ, Tsang IW, Kwok JT et al (2011) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22(2):199–210

    Article  Google Scholar 

  16. Jiang M, Huang W, Huang Z et al (2015) Integration of global and local metrics for domain adaptation learning via dimensionality reduction. IEEE T Cybern 24:1–14

    Google Scholar 

  17. Deng W, Lendasse A, Ong Y, Tsang IW, Chen L, Zheng Q (2019) Domain adaption via feature selection on explicit feature map. IEEE Trans Neural Netw Learn Syst 30(4):1180–1190

    Article  MathSciNet  Google Scholar 

  18. Cai R, Li J, Zhang Z, Yang X, Hao Z (2020) DACH: domain adaptation without domain information. IEEE Trans Neural Netw Learn Syst 31:5055–5067

    Article  MathSciNet  Google Scholar 

  19. Long M, Wang J, Jordan MI (2017) Deep transfer learning with joint adaptation networks. In: Proc. 34th Int. Conf. Mach. Learn., pp. 2208-2217

  20. Bousmalis K, Silberman N, Dohan D, Erhan D, Krishnan D (2017) Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 95-104

  21. Borgwardt KM, Gretton A, Rasch MJ et al (2006) Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22(14):e49–e57

    Article  Google Scholar 

  22. Kreyszig E (1978) Introductory functional analysis with applications, In. Wiley, New York

    MATH  Google Scholar 

  23. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  24. Cui Z, Li W, Xu D et al (2014) Flowing on Riemannian manifold: domain adaptation by shifting covariance. IEEE T Cybern 44(12):2264–2273

    Article  Google Scholar 

  25. Wang S, Zhang L et al (2020) Class-specific reconstruction transfer learning for visual recognition across domains. IEEE Trans Image Process 29:2424–2438

    Article  Google Scholar 

  26. Li F T, Pan S J, Jin O, et al (2012) Cross-domain co-extraction of sentiment and topic lexicons. In: Meeting of the Association for Computational Linguistics: Long Papers. Association for Computational Linguistics

  27. Long M, Cao Y, Wang J, et al (2015) Learning transferable features with deep adaptation networks. In: ICML, pp. 97–105

  28. Long M, Cao Y, Cao Z et al (2018) Transferable representation learning with deep adaptation networks. IEEE Trans Pattern Anal Mach Intell 41:3071–3085

    Article  Google Scholar 

  29. Zhang J, Ding Z, Li W, et al (2018) Importance weighted adversarial nets for partial domain adaptation. In: CVPR, pp. 8156–8164

  30. Gong B, Shi Y, Sha F, et al (2012) Geodesic flow kernel for unsupervised domain adaptation. In: CVPR,

  31. Fernando B, Habrard A, Sebban M, et al (2013) Unsupervised visual domain adaptation using subspace alignment. In: ICCV, pp. 2960–2967

  32. Pan SJ, Kwok JT, Yang Q (2008) Transfer learning via dimensionality reduction. AAAI 2:677–682

    Google Scholar 

  33. Liu G, Lin Z, Yu Y, et al (2010) Robust subspace segmentation by low-rank representation. In: ICML, pp. 663–670

  34. Liu G, Lin Z, Yan S et al (2012) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  35. Jhuo I H, Liu D, Lee D T, et al (2012) Robust visual domain adaptation with low-rank reconstruction. In: CVPR, pp. 2168–2175

  36. Shekhar S, Patel VM, Nguyen HV et al (2013) Generalized domain-adaptive dictionaries. CVPR 5:361–368

    Google Scholar 

  37. Shekhar S, Patel VM, Nguyen HV et al (2015) Coupled projections for adaptation of dictionaries. IEEE Trans Image Process 24(10):2941–2954

    Article  MathSciNet  Google Scholar 

  38. Zhu F, Shao L (2014) Weakly-supervised cross-domain dictionary learning for visual recognition. IJCV 109(1–2):42–59

    Article  Google Scholar 

  39. Li S, Shao M, Fu Y (2015) Cross-view projective dictionary learning for person re-identification. In: IJCAI

  40. Li S, Song S, Huang G et al (2018) Domain invariant and class discriminative feature learning for visual domain adaptation. IEEE Trans Image Process 27(9):4260–4273

    Article  MathSciNet  Google Scholar 

  41. Zhang L, Wang S et al (2019) Manifold criterion guided transfer learning via intermediate domain generation. IEEE Trans Neural Netw Learn Syst 30(12):3759–3773

    Article  MathSciNet  Google Scholar 

  42. Ramirez I, Lecumberry F, G. Sapiro, et al (2009) Universal priors for sparse modeling. In: IEEE International Workshop on Computational Advances in Multi-sensor Adaptive Processing, pp. 197–200

  43. Castrodad A, Xing Z, Greer J, Bosch E, Carin L et al (2011) Learning discriminative sparse models for source separation and mapping of hyperspectral imagery. IEEE Trans Geosci Remote Sens 49(11):4263–4281

    Article  Google Scholar 

  44. Zhou N, Shen Y, Peng J, et al (2012) Learning inter-related visual dictionary for object recognition. In: CVPR, pp. 3490–3497

  45. Perronnin F (2008) Universal and adapted vocabularies for generic visual categorization. IEEE Trans Pattern Anal Mach Intell 30(7):1243–1256

    Article  Google Scholar 

  46. Gao S, Tsang WH, Ma Y (2014) Learning category-specific dictionary and shared dictionary for fine-grained image categorization. IEEE Trans Image Process 23(2):623–634

    Article  MathSciNet  Google Scholar 

  47. Sivalingam R, Boley D, Morellas V et al (2015) Tensor dictionary learning for positive definite matrices. IEEE Trans Image Process 24(11):4592–4601

    Article  MathSciNet  Google Scholar 

  48. Harandi M, Salzmann M (2015) Riemannian coding and dictionary learning: Kernels to the rescue. In: CVPR, pp. 3926–3935

  49. [Online]. Available: http://spams-devel.gforge.inria.fr/

  50. [Online]. Available: http://cvxr.com/cvx/

  51. Li J, Lu K, Zhu L (2019) Transfer independently together: a generalized framework for domain adaptation. IEEE T Cybern 49(6):2144–2155

    Article  Google Scholar 

  52. Zhang L, Fu J, Wang S et al (2020) Guide subspace learning for unsupervised domain adaptation. IEEE Trans Neural Netw Learn Syst 31:3374–3388

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengming Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, W., Ma, Z., Lin, Y. et al. Domain adaption based on source dictionary regularized RKHS subspace learning. Pattern Anal Applic 24, 1513–1532 (2021). https://doi.org/10.1007/s10044-021-01002-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-021-01002-x

Keywords