[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Local risk-minimization for Barndorff-Nielsen and Shephard models

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We obtain explicit representations of locally risk-minimizing strategies for call and put options in Barndorff-Nielsen and Shephard models, which are Ornstein–Uhlenbeck-type stochastic volatility models. Using Malliavin calculus for Lévy processes, Arai and Suzuki (Int. J. Financ. Eng. 2:1550015, 2015) obtained a formula for locally risk-minimizing strategies for Lévy markets under many additional conditions. Supposing mild conditions, we make sure that the Barndorff-Nielsen and Shephard models satisfy all the conditions imposed in (Arai and Suzuki in Int. J. Financ. Eng. 2:1550015, 2015). Among others, we investigate the Malliavin differentiability of the density of the minimal martingale measure. Moreover, we introduce some numerical experiments for locally risk-minimizing strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arai, T.: Local risk-minimization for Barndorff-Nielsen and Shephard models with volatility risk premium. Adv. Math. Econ. 20, 3–22 (2016)

    Article  MathSciNet  Google Scholar 

  2. Arai, T., Imai, Y., Suzuki, R.: Numerical analysis on local risk-minimization for exponential Lévy models. Int. J. Theor. Appl. Finance 19, 1650008 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arai, T., Suzuki, R.: Local risk minimization for Lévy markets. Int. J. Financ. Eng. 2, 1550015 (2015)

    Article  MathSciNet  Google Scholar 

  4. Barndorff-Nielsen, O.E., Shephard, N.: Modelling by Lévy processes for financial econometrics. In: Barndorff-Nielsen, O.E., et al. (eds.) Lévy Processes—Theory and Applications, pp. 283–318. Birkhäuser, Basel (2001)

    Chapter  Google Scholar 

  5. Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian Ornstein–Uhlenbeck based models and some of their uses in financial econometrics. J. R. Stat. Soc., Ser. B, Stat. Methodol. 63, 167–241 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benth, F.E., Detering, N.: Pricing and hedging Asian-style options in energy. Finance Stoch. 19, 849–889 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carr, P., Madan, D.: Option valuation using the fast Fourier transform. J. Comput. Finance 2, 61–73 (1999)

    Article  Google Scholar 

  8. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall/CRC Press, London/Boca Raton (2004)

    MATH  Google Scholar 

  9. Cont, R., Tankov, P., Voltchkova, E.: Hedging with options in models with jumps. In: Benth, F., et al. (eds.) Stochastic Analysis and Applications. The Abel Symposium 2005, pp. 197–217. Springer, Berlin (2007)

    Google Scholar 

  10. Delong, Ł., Imkeller, P.: On Malliavin’s differentiability of BSDEs with time delayed generators driven by Brownian motions and Poisson random measures. Stoch. Process. Appl. 120, 1748–1775 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Di Nunno, G., Øksendal, B., Proske, F.: Malliavin Calculus for Lévy Processes with Applications to Finance. Springer, Berlin (2009)

    Book  Google Scholar 

  12. Ishikawa, Y.: Stochastic Calculus of Variations for Jump Processes. de Gruyter, Berlin (2013)

    Book  MATH  Google Scholar 

  13. Kallsen, J., Pauwels, A.: Variance-optimal hedging in general affine stochastic volatility models. Adv. Appl. Probab. 42, 83–105 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kallsen, J., Vierthauer, R.: Quadratic hedging in affine stochastic volatility models. Rev. Deriv. Res. 12, 3–27 (2009)

    Article  MATH  Google Scholar 

  15. Nicolato, E., Venardos, E.: Option pricing in stochastic volatility models of the Ornstein–Uhlenbeck type. Math. Finance 13, 445–466 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Protter, P.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  17. Schoutens, W.: Lévy Processes in Finance: Pricing Financial Derivatives. Wiley, Hoboken (2003)

    Book  Google Scholar 

  18. Schweizer, M.: A guided tour through quadratic hedging approaches. In: Jouini, E., et al. (eds.) Option Pricing, Interest Rates and Risk Management. Handbooks in Mathematical Finance, pp. 538–574. Cambridge University Press, Cambridge (2001)

    Chapter  Google Scholar 

  19. Schweizer, M.: Local risk-minimization for multidimensional assets and payment streams. Banach Cent. Publ. 83, 213–229 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Situ, R.: Theory of Stochastic Differential Equations with Jumps and Applications. Mathematical and Analytical Techniques with Applications to Engineering. Springer, Berlin (2005)

    MATH  Google Scholar 

  21. Solé, J.L., Utzet, F., Vives, J.: Canonical Lévy process and Malliavin calculus. Stoch. Process. Appl. 117, 165–187 (2007)

    Article  MATH  Google Scholar 

  22. Suzuki, R.: A Clark–Ocone type formula under change of measure for Lévy processes with \(L^{2}\)-Lévy measure. Commun. Stoch. Anal. 7, 383–407 (2013)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Takuji Arai gratefully acknowledges the financial support of Ishii Memorial Securities Research Promotion Foundation and Scientific Research (C) No. 15K04936 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuji Arai.

Appendix

Appendix

1.1 A.1 Theorem 3.7 of [3]

Theorem 3.7 of [3], which provides an explicit representation formula for LRM strategies in Lévy markets, is frequently referred to in this paper. Therefore, we give its statement for BNS models under Assumption 2.2. Note that although Assumption 2.1 of [3] is imposed in Theorem 3.7 of [3], it is satisfied under Assumption 2.2. For more details, see Remark 2.3.

Theorem A.1

(Theorem 3.7 of [3])

Let \(F\) be an \(L^{2}({\mathbb {P}})\) random variable satisfying the following three conditions:

AS1: (Assumption 2.6 in [3]) \(Z_{T}F\) is in \(L^{2}({\mathbb {P}})\).

AS2: (Assumption 3.4 in [3]) Conditions (C1)(C6) for \(F\) are satisfied.

AS3: ((3.1) in [3]) We have

$$ {\mathbb {E}}\left[\int_{0}^{T}\left((h^{0}_{t})^{2}+\int_{0}^{\infty}(h^{1}_{t,z})^{2}\nu(dz)\right)dt\right ]< \infty, $$

where \(h_{t,z}^{1}={\mathbb {E}}_{{\mathbb {P}}^{*}}[F(H^{*}_{t,z}-1)+zH^{*}_{t,z}D_{t,z}F|{\mathcal {F}} _{t-}]\) and

$$\begin{aligned} h^{0}_{t} &= {\mathbb {E}}_{{\mathbb {P}}^{*}}\bigg[D_{t,0}F-F\bigg(\int_{0}^{T}D_{t,0}u_{s}dW^{{\mathbb {P}}^{*}}_{s} \\ & \phantom{=:{\mathbb {E}}_{{\mathbb {P}}^{*}}\Bigg[D_{t,0}F-F\bigg(}+\int_{0}^{T}\int_{0}^{\infty}\frac{D_{t,0}\theta_{s,x}}{1-\theta_{s,x}}\widetilde{N}^{{\mathbb {P}}^{*}}(ds,dx)\bigg)\bigg|{\mathcal {F}}_{t-}\bigg]. \end{aligned}$$

Then the LRM strategy \(\xi^{F}\) for the claim \(F\) is given by

$$ \xi^{F}_{t}=\frac{1}{S_{t-}(\sigma^{2}_{t}+C_{\rho})}\left(h^{0}_{t}\sigma_{t}+\int _{0}^{\infty}h^{1}_{t,z}(e^{\rho z}-1)\nu(dz)\right). $$

1.2 A.2 Properties of \(\sigma_{t}\) and related Malliavin derivatives

The squared volatility process \((\sigma_{t}^{2})\), given as a solution to the SDE (1.2), is represented as

$$ \sigma_{t}^{2}=e^{-\lambda t}\sigma_{0}^{2}+\int_{0}^{t}e^{-\lambda(t-s)}dJ_{s}. $$
(A.1)

Remark that we have

$$ \sigma_{t}^{2}\geq e^{-\lambda t}\sigma_{0}^{2}\geq e^{-\lambda T}\sigma_{0}^{2} $$
(A.2)

and

$$ \int_{0}^{t}\sigma_{s}^{2}ds = \frac{1}{\lambda}(J_{t}-\sigma_{t}^{2}+\sigma_{0}^{2}) \leq\frac{1}{\lambda}(J_{t}+\sigma_{0}^{2}). $$
(A.3)

Next, we calculate some related Malliavin derivatives.

Lemma A.2

For any \(s\in[0,T]\), we have \(\sigma_{s}^{2}\in{\mathbb {D}}^{1,2}\) and

$$ D_{t,z}\sigma_{s}^{2}=e^{-\lambda(s-t)}{\mathbf{1}}_{[0,s]\times(0,\infty)}(t,z) $$
(A.4)

for \((t,z)\in[0,T]\times[0,\infty)\).

Proof

We can rewrite (A.1) as

$$\begin{aligned} \sigma_{s}^{2} &= e^{-\lambda s}\sigma_{0}^{2}+\int_{0}^{s}\int_{0}^{\infty}e^{-\lambda(s-u)}x\nu (dx)du \\ & \phantom{=:}+\int_{[0,T]\times[0,\infty)}e^{-\lambda(s-u)}{\mathbf{1}}_{[0,s]\times(0,\infty)}(u,x)Q(du,dx). \end{aligned}$$

Moreover, we have \(\int_{[0,T]\times[0,\infty)}e^{-2\lambda(s-u)}{\mathbf{1}}_{[0,s]\times(0,\infty)}(u,x)q(du,dx)<\infty\). The lemma follows by Definition 2.8. □

Lemma A.3

For any \(s\in[0,T]\), we have \(\sigma_{s}\in{\mathbb {D}}^{1,2}\) and

$$ D_{t,z}\sigma_{s}=\frac{\sqrt{\sigma_{s}^{2}+ze^{-\lambda(s-t)}}-\sigma _{s}}{z}{\mathbf{1}}_{[0,s]\times(0,\infty)}(t,z) $$

for \((t,z)\in[0,T]\times[0,\infty)\). Furthermore, we have \(0\leq D_{t,z}\sigma_{s}\leq\frac{1}{\sqrt{z}}{\mathbf{1}}_{[0,s]}(t)\) for \(z>0\).

Proof

Taking a \(C^{1}\)-function \(f\) such that \(f^{\prime}\) is bounded and \(f(r) = \sqrt{r}\) for \(r\geq e^{-\lambda T}\sigma_{0}^{2}\), we have \(\sigma_{s}=f(\sigma_{s}^{2})\) by (A.2). Proposition 2.6 in [22] implies that we have \(\sigma_{s}\in{\mathbb {D}} ^{1,2}\), \(D_{t,0}\sigma_{s}=f^{\prime}(\sigma_{s}^{2})D_{t,0}\sigma_{s}^{2}=0\), and

$$ D_{t,z}\sigma_{s} = \frac{f(\sigma_{s}^{2}+zD_{t,z}\sigma_{s}^{2})-f(\sigma_{s}^{2})}{z} = \frac{\sqrt{\sigma_{s}^{2}+ze^{-\lambda(s-t)}}-\sigma_{s}}{z}{\mathbf{1}}_{[0,s]}(t) $$

for \(z>0\) since \(D_{t,z}\sigma_{s}^{2}\) is nonnegative by (A.4). In addition, we have

$$ D_{t,z}\sigma_{s}\leq\frac{\sqrt{ze^{-\lambda(s-t)}}}{z}{\mathbf{1}}_{[0,s]}(t) \leq\frac{1}{\sqrt{z}}{\mathbf{1}}_{[0,s]}(t) $$

for \(z>0\). □

Lemma A.4

We have \(\int_{0}^{T}\sigma_{s}^{2}ds\in{\mathbb {D}}^{1,2}\) and

$$ D_{t,z}\int_{0}^{T}\sigma_{s}^{2}ds={\mathcal {B}}(T-t){\mathbf{1}}_{(0,\infty)}(z) $$

for \((t,z)\in[0,T]\times[0,\infty)\), where the functionis defined just before Assumption  2.2.

Proof

First, we have

$$\begin{aligned} \int_{0}^{T}\sigma_{s}^{2}ds &= \sigma_{0}^{2}\int_{0}^{T}e^{-\lambda s}ds+\int_{0}^{T}\int_{0}^{s}e^{-\lambda (s-u)}dJ_{u}ds \\ &= \sigma_{0}^{2}\frac{1-e^{-\lambda T}}{\lambda}+\int_{0}^{T}\int _{u}^{T}e^{-\lambda(s-u)}dsdJ_{u} \\ &= \sigma_{0}^{2}{\mathcal {B}}(T)+\int_{0}^{T}{\mathcal {B}}(T-u)dJ_{u}. \end{aligned}$$

From Definition 2.8 we obtain \(\int_{0}^{T}\sigma_{s}^{2}ds\in{\mathbb {D}}^{1,2}\) and

$$ D_{t,z}\int_{0}^{T}\sigma_{s}^{2}ds= {\mathcal {B}}(T-t){\mathbf{1}}_{(0,\infty)}(z) $$

for \((t,z)\in[0,T]\times(0,\infty)\). □

Lemma A.5

We have \(\int_{0}^{T}\sigma_{s}dW_{s}\in{\mathbb {D}}^{1,2}\) and

$$ D_{t,z}\int_{0}^{T}\sigma_{s}dW_{s}=\sigma_{t}{\mathbf{1}}_{\{0\}}(z)+\int_{t}^{T}\frac {\sqrt{\sigma_{s}^{2}+ze^{-\lambda(s-t)}}-\sigma_{s}}{z}dW_{s}{\mathbf{1}}_{(0,\infty)}(z) $$

for \((t,z)\in[0,T]\times[0,\infty)\).

Proof

To begin, we show that \(\sigma\in{\mathbb {L}}_{0}^{1,2}\). Lemma A.3 implies that \(\sigma_{s}\in{\mathbb {D}}^{1,2}\) for any \(s\in[0,T]\). We have \({\mathbb {E}}[\int_{0}^{T}\sigma_{s}^{2}ds]<\infty\) by (A.3) and the integrability of \(J_{T}\). Since \(|D_{t,z}\sigma_{s}|^{2}\le\frac{1}{z}\) by Lemma A.3, item (c) of the definition of \({\mathbb {L}}_{0}^{1,2}\) is satisfied. Hence, Lemma 3.3 in [10] provides \(\int_{0}^{T}\sigma_{s}dW_{s}\in{\mathbb {D}} ^{1,2}\) and

$$\begin{aligned} D_{t,z}\int_{0}^{T}\sigma_{s}dW_{s} &= D_{t,z}\int_{[0,T]\times[0,\infty)}\sigma_{s}{\mathbf{1}}_{\{0\} }(x)Q(ds,dx) \\ &= \sigma_{t}{\mathbf{1}}_{\{0\}}(z)+\int_{0}^{T}D_{t,z}\sigma_{s}dW_{s} \\ &= \sigma_{t}{\mathbf{1}}_{\{0\}}(z)+\int_{t}^{T}\frac{\sqrt{\sigma _{s}^{2}+ze^{-\lambda(s-t)}}-\sigma_{s}}{z}dW_{s}{\mathbf{1}}_{(0,\infty)}(z) \end{aligned}$$

for \((t,z)\in[0,T]\times[0,\infty)\) by Lemma A.3. □

Finally, we calculate \(D_{t,z}L_{T}\) as follows.

Proposition A.6

\(L_{T}\in{\mathbb {D}}^{1,2}\), and for \((t,z)\in[0,T]\times[0,\infty)\), we have

$$\begin{aligned} &D_{t,z}L_{T} \\ &=\sigma_{t}{\mathbf{1}}_{\{0\}}(z)+\bigg(-\frac{1}{2}{\mathcal {B}}(T-t)+\int_{t}^{T}\frac {\sqrt{\sigma_{s}^{2}+ze^{-\lambda(s-t)}}-\sigma_{s}}{z}dW_{s}+\rho\bigg){\mathbf{1}}_{(0,\infty)}(z). \end{aligned}$$

Proof

By (2.1) we have \(L_{T}=\mu T-\frac{1}{2}\int_{0}^{T}\sigma_{s}^{2}ds+\int _{0}^{T}\sigma_{s}dW_{s}+\rho J_{T}\). Since \(J_{T}\in{\mathbb {D}}^{1,2}\) and \(D_{t,z}J_{T}={\mathbf{1}}_{(0,\infty)}(z)\), we obtain the result by Lemmas A.4 and A.5. □

1.3 A.3 Properties of \(u_{s}\) and \(\theta_{s,x}\) and related Malliavin derivatives

We begin with recalling the two constants defined in (2.2):

$$ C_{u} := \max\bigg\{ \frac{|\alpha|e^{\frac{\lambda T}{2}}}{\sigma_{0}},\frac {|\alpha|}{C_{\rho}}\bigg\} \qquad\mbox{and}\qquad C_{\theta}:= \max\bigg\{ \frac{|\alpha|}{C_{\rho}},1\bigg\} . $$

The next lemma is cited often throughout the paper.

Lemma A.7

For any \(s\in[0,T]\) and any \(x\in(0,\infty)\), the following hold:

1. \(|u_{s}|\leq C_{u}\).

2. \(|\theta_{s,x}|\leq C_{\theta}\) and \(|\theta_{s,x}|\leq C_{\theta}(1-e^{\rho x})\leq C_{\theta}|\rho|x\).

3. \(\theta_{s,x}<1-e^{\rho x}\).

4. \(|\log(1-\theta_{s,x})|\leq C_{\theta}|\rho|x\).

5. \(\frac{1}{1-\theta_{s,x}}<\hat{C}_{\theta}\) for some \(\hat{C}_{\theta}>0\).

Proof

1. We have \(|u_{s}|\leq\frac{|\alpha|}{\sigma_{s}}\leq\frac{|\alpha|e^{\frac {\lambda T}{2}}}{\sigma_{0}}\) for any \(s\in[0,T]\) by (A.2).

2. \(|\theta_{s,x}|\leq\frac{|\alpha|}{C_{\rho}}(1-e^{\rho x})\leq C_{\theta}\) and \(1-e^{\rho x}\leq|\rho|x\) for any \(x>0\).

3. As seen in Remark 2.3, \(\frac{\alpha}{\sigma^{2}_{s}+C_{\rho}}>-1\) for any \(s\in[0,T]\). We have then \(\theta_{s,x}<1-e^{\rho x}\).

4. When \(\theta_{s,x}\geq0\), we have

$$ 0\geq\log(1-\theta_{s,x}) >\log\big(1-(1-e^{\rho x})\big)=\rho x\geq C_{\theta}\rho x. $$

On the other hand, if \(\theta_{s,x}< 0\), then \(0<\log(1-\theta _{s,x})\leq-\theta_{s,x}\leq C_{\theta}|\rho|x\).

5. If \(\theta_{s,x}\leq0\), then \(\frac{1}{1-\theta_{s,x}}\leq1\); otherwise, if \(\theta_{s,x}>0\), equivalently \(\alpha<0\), then

$$ 1-\theta_{s,x} = 1+\frac{\alpha}{\sigma^{2}_{s}+C_{\rho}}(1-e^{\rho x}) \geq 1+\frac{\alpha}{\sigma^{2}_{s}+C_{\rho}} \geq1+\frac{\alpha}{e^{-\lambda T}\sigma^{2}_{0}+C_{\rho}}>0 $$

by Assumption 2.2. This completes the proof. □

Next, we calculate some Malliavin derivatives related to \(u_{s}\) and \(\theta_{s,x}\).

Lemma A.8

For any \(s\in[0,T]\), we have \(u_{s}\in{\mathbb {D}}^{1,2}\) and

$$\begin{aligned} D_{t,z}u_{s} &= \frac{f_{u}(\sigma_{s}+zD_{t,z}\sigma_{s})-f_{u}(\sigma_{s})}{z}{\mathbf{1}}_{[0,s]\times(0,\infty)}(t,z) \\ &= \frac{f_{u}(\sqrt{\sigma^{2}_{s}+ze^{-\lambda(s-t)}})-f_{u}(\sigma _{s})}{z}{\mathbf{1}}_{[0,s]\times(0,\infty)}(t,z) \end{aligned}$$
(A.5)

for \((t,z)\in[0,T]\times[0,\infty)\), where \(f_{u}(r) := \frac{\alpha r}{r^{2}+C_{\rho}}\) for \(r\in{\mathbb {R}}\). Moreover, we have

$$ |D_{t,z}u_{s}|\leq\frac{C_{u}}{\sqrt{z}}{\mathbf{1}}_{[0,s]}(t) \quad\textit {and}\quad|D_{t,z}u_{s}|\leq\frac{C_{u}^{\prime}}{z}{\mathbf{1}}_{[0,s]}(t) $$

for some \(C_{u}^{\prime}>0\).

Proof

Note that \(f^{\prime}_{u}(r)=\alpha\frac{C_{\rho}-r^{2}}{(r^{2}+C_{\rho})^{2}}\) and \(|f^{\prime}_{u}(r)|\leq\frac{|\alpha|}{C_{\rho}}\leq C_{u}\). Since \(u_{s}=f_{u}(\sigma_{s})\) and \(\sigma_{s}\in{\mathbb {D}}^{1,2}\), Proposition 2.6 in [22], together with Lemma A.3, implies \(u_{s}\in {\mathbb {D}}^{1,2}\) and (A.5). In particular, we have \(D_{t,0}u_{s} = f^{\prime}_{u}(\sigma_{s})D_{t,0}\sigma _{s} = 0\). Further, Lemma A.3 again yields \(|D_{t,z}u_{s}|\leq\frac {1}{z}|zD_{t,z}\sigma_{s}|C_{u}\leq\frac{1}{\sqrt{z}}{\mathbf{1}}_{[0,s]}(t)C_{u}\). Moreover, since \(f_{u}(r)\) is bounded, we can find a \(C_{u}^{\prime}>0\) such that \(|D_{t,z}u_{s}|\leq\frac{C_{u}^{\prime}}{z}\). □

Lemma A.9

For any \((s,x)\in[0,T]\times(0,\infty)\), we have \(\theta_{s,x}\in{\mathbb {D}} ^{1,2}\) and

$$\begin{aligned} D_{t,z}\theta_{s,x} &= \frac{f_{\theta}(\sigma_{s}+zD_{t,z}\sigma_{s})-f_{\theta}(\sigma _{s})}{z}(e^{\rho x}-1){\mathbf{1}}_{[0,s]\times(0,\infty)}(t,z) \\ &= \frac{f_{\theta}(\sqrt{\sigma^{2}_{s}+ze^{-\lambda(s-t)}})-f_{\theta}(\sigma _{s})}{z}(e^{\rho x}-1){\mathbf{1}}_{[0,s]\times(0,\infty)}(t,z) \end{aligned}$$
(A.6)

for \((t,z)\in[0,T]\times[0,\infty)\), where \(f_{\theta}(r) := \frac{\alpha }{r^{2}+C_{\rho}}\) for \(r\in{\mathbb {R}}\). Moreover, we have

$$ |D_{t,z}\theta_{s,x}|\leq\frac{C^{\prime}_{\theta}}{\sqrt{z}}(1-e^{\rho x}){\mathbf{1}}_{[0,s]}(t) \ \ \textit{ and } \ \ |D_{t,z}\theta_{s,x}|\leq\frac{2C_{\theta}}{z}(1-e^{\rho x}){\mathbf{1}}_{[0,s]}(t) $$
(A.7)

for some \(C_{\theta}^{\prime}>0\).

Proof

Note that \(\theta_{s,x}=f_{\theta}(\sigma_{s})(e^{\rho x}-1)\) and \(f^{\prime}_{\theta}(r)=-\frac{2\alpha r}{(r^{2}+C_{\rho})^{2}}\). Hence, \(|f^{\prime}_{\theta}(r)|\) is bounded. Therefore, the same argument as for Lemma A.8 implies (A.6). In addition, (A.7) is given by the boundedness of \(f_{\theta}\) and \(f_{\theta}^{\prime}\). □

Lemma A.10

For any \((s,x)\in[0,T]\times(0,\infty)\), we have \(\log(1-\theta _{s,x})\in{\mathbb {D}}^{1,2}\) and

$$ D_{t,z}\log(1-\theta_{s,x})=\frac{\log(1-\theta_{s,x}-zD_{t,z}\theta _{s,x})-\log(1-\theta_{s,x})}{z}{\mathbf{1}}_{(0,\infty)}(z) $$

for \((t,z)\in[0,T]\times[0,\infty)\). Moreover, we have

$$ |D_{t,z}\log(1-\theta_{s,x})|\leq|D_{t,z}\theta_{s,x}|e^{-\rho x}. $$

Proof

For \(x>0\), we denote

$$\begin{aligned} g_{x}(r) := \left\{ \textstyle\begin{array}{ll} \log(1-r), &\quad r< 1-e^{\rho x}, \\ -e^{-\rho x}r+e^{-\rho x}-1+\rho x, &\quad r\geq1-e^{\rho x}. \end{array}\displaystyle \right. \end{aligned}$$

Note that \(g_{x}\) is a \(C^{1}\)-function satisfying \(|g^{\prime}_{x}(r)|\leq e^{-\rho x}\) for all \(r\in{\mathbb {R}}\). Because \(\theta_{s,x}\in{\mathbb {D}}^{1,2}\) and \(\log(1-\theta_{s,x})=g_{x}(\theta _{s,x})\) by item 3 of Lemma A.7, we have

$$ D_{t,z}\log(1-\theta_{s,x})=\frac{g_{x}(\theta_{s,x}+zD_{t,z}\theta _{s,x})-g_{x}(\theta_{s,x})}{z}{\mathbf{1}}_{(0,\infty)}(z). $$

Lemma A.9 implies, for \(t\in[0,s]\) and \(z\in(0,\infty)\),

$$\begin{aligned} \theta_{s,x}+zD_{t,z}\theta_{s,x} &= f_{\theta}\big(\sqrt{\sigma^{2}+ze^{-\lambda(s-t)}}\big)(e^{\rho x}-1) \\ &= \frac{\alpha(e^{\rho x}-1)}{\sigma^{2}_{s}+ze^{-\lambda(s-t)}+C_{\rho}} < 1-e^{\rho x}. \end{aligned}$$
(A.8)

We have then \(g_{x}(\theta_{s,x}+zD_{t,z}\theta_{s,x})=\log(1-\theta _{s,x}-zD_{t,z}\theta_{s,x})\). □

1.4 A.4 On \(D_{t,z}\log Z_{T}\)

We show that \(\log Z_{T}\in{\mathbb {D}}^{1,2}\) and calculate \(D_{t,z}\log Z_{T}\). Equality (2.5) implies that

$$\begin{aligned} \log Z_{T} &= -\int_{0}^{T}u_{s}dW_{s}-\frac{1}{2}\int_{0}^{T}u_{s}^{2}ds+\int_{0}^{T}\int_{0}^{\infty}\log (1-\theta_{s,x})\widetilde{N}(ds,dx) \\ & \phantom{=:}+\int_{0}^{T}\int_{0}^{\infty}\big(\log(1-\theta_{s,x})+\theta _{s,x}\big)\nu(dx)ds. \end{aligned}$$
(A.9)

We discuss each term of (A.9) separately. As seen in Sect. 4, we have \(u\in{\mathbb {L}}_{0}^{1,2}\). Therefore, Lemma 3.3 of [10] implies that

$$ D_{t,0}\int_{0}^{T}u_{s}dW_{s}=u_{t}+\int_{0}^{T}D_{t,0}u_{s}dW_{s}=u_{t} $$

and \(D_{t,z}\int_{0}^{T}u_{s}dW_{s}=\int_{0}^{T}D_{t,z}u_{s}dW_{s}\) for \(z>0\). Similarly, we have

$$ D_{t,0}\int_{0}^{T}\int_{0}^{\infty}\log(1-\theta_{s,x})\widetilde{N}(ds,dx)=0 $$

and

$$\begin{aligned} {D_{t,z}\int_{0}^{T}\int_{0}^{\infty}\log(1-\theta_{s,x})\widetilde{N}(ds,dx)} &= \frac{\log(1-\theta_{t,z})}{z}\\ &\phantom{=:}+\int_{0}^{T}\int_{0}^{\infty}D_{t,z}\log(1-\theta_{s,x})\widetilde{N}(ds,dx) \end{aligned}$$

for \(z>0\). As for \(D_{t,z}\int_{0}^{T}u_{s}^{2}ds\), because \(u^{2}\in{\mathbb {L}}_{0}^{1,2}\) by Sect. 4, Lemma 3.2 of [10] yields

$$ D_{t,z}\int_{0}^{T}u_{s}^{2}ds=\int_{0}^{T}D_{t,z}u_{s}^{2}ds=2\int _{0}^{T}u_{s}D_{t,z}u_{s}ds+z\int_{0}^{T}(D_{t,z}u_{s})^{2}ds $$

for \(z\geq0\). In particular, \(D_{t,0}\int_{0}^{T}u_{s}^{2}ds=0\). For the fourth term of (A.9), because \(\log(1-\theta)+\theta\in\widetilde{{\mathbb {L}} }_{1}^{1,2}\), Proposition 3.5 of [22] implies

$$\begin{aligned} &D_{t,z}\int_{0}^{T}\int_{0}^{\infty}\big(\log(1-\theta_{s,x})+\theta _{s,x}\big)\nu(dx)ds \\ &= \int_{0}^{T}\int_{0}^{\infty}\big(D_{t,z}\log(1-\theta_{s,x})+D_{t,z}\theta _{s,x}\big)\nu(dx)ds \end{aligned}$$

for \(z\geq0\). Collectively, we conclude the following:

Proposition A.11

We have \(\log Z_{T}\in{\mathbb {D}}^{1,2}\), \(D_{t,0}\log Z_{T}=u_{t}\), and

$$\begin{aligned} D_{t,z}\log Z_{T} &= -\int_{0}^{T}D_{t,z}u_{s}dW_{s}-\int_{0}^{T}u_{s}D_{t,z}u_{s}ds-\frac{z}{2}\int _{0}^{T}(D_{t,z}u_{s})^{2}ds \\ & \phantom{=:}+\int_{0}^{T}\int_{0}^{\infty}D_{t,z}\log(1-\theta_{s,x})\widetilde{N} (ds,dx) \\ & \phantom{=:}+\int_{0}^{T}\int_{0}^{\infty}\big(D_{t,z}\log(1-\theta _{s,x})+D_{t,z}\theta_{s,x}\big)\nu(dx)ds+\frac{\log(1-\theta_{t,z})}{z} \end{aligned}$$

for \(z>0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arai, T., Imai, Y. & Suzuki, R. Local risk-minimization for Barndorff-Nielsen and Shephard models. Finance Stoch 21, 551–592 (2017). https://doi.org/10.1007/s00780-017-0324-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-017-0324-8

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation