Abstract
The honeybee, Apis mellifera, is a valuable model system for the study of olfactory coding and its learning and memory capabilities. In order to understand the synaptic organisation of olfactory information processing, the transmitter receptors of the antennal lobe need to be characterized. Using whole-cell patch-clamp recordings, we analysed the ligand-gated ionic currents of antennal lobe neurons in primary cell culture. Pressure applications of acetylcholine (ACh), γ-amino butyric acid (GABA) or glutamate induced rapidly activating ionic currents. The ACh-induced current flows through a cation-selective ionotropic receptor with a nicotinic profile. The ACh-induced current is partially blocked by α-bungarotoxin. Epibatidine and imidacloprid are partial agonists. Our data indicate the existence of an ionotropic GABA receptor which is permeable to chloride ions and sensitive to picrotoxin (PTX) and the insecticide fipronil. We also identified the existence of a chloride current activated by pressure applications of glutamate. The glutamate-induced current is sensitive to PTX. Thus, within the honeybee antennal lobe, an excitatory cholinergic transmitter system and two inhibitory networks that use GABA or glutamate as their neurotransmitter were identified.
Similar content being viewed by others
Abbreviations
- AMPA:
-
Amino-hydroxy-5-methyl-4-isoxazol-propionic acid
- BGT:
-
α-Bungarotoxin
- ACh:
-
Acetylcholine
- ATR:
-
Atropine
- BIC:
-
Bicuculline
- CACA:
-
4-Amino-cis-butenoic acid
- CCh:
-
Carbamylcholine
- DHE:
-
Dihydroxy-β-erythroidine
- DTC:
-
D-tubocurarine
- EPI:
-
Epibatidine
- GABA:
-
γ-Aminobutyric acid
- IMI:
-
Imidacloprid
- MEC:
-
Mecamylamine
- MLA:
-
Methyllycaconitine
- NIC:
-
Nicotine
- NMDG-Cl:
-
N-methyl-D-glucamine chloride
- PTX:
-
Picrotoxin
- TTX:
-
Tetrodotoxin
References
Albert JL, Lingle CJ (1993) Activation of nicotinic acetylcholine receptors on cultured Drosophila and other insect neurones. J Physiol 463:605–630
Alkondon M, Albuquerque EX (1993) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes. J Pharmacol Exp Ther 265:1455–1473
Alkondon M, Pereira EF, Albuquerque EX (1998) Alpha-bungarotoxin- and methyllycaconitine-sensitive nicotinic receptors mediate fast synaptic transmission in interneurons of rat hippocampal slices. Brain Res 810:257–263
Anthony NM, Harrison JB, Sattelle DB (1993) GABA receptor molecules of insects. Exs 63:172–209
Aydar E, Beadle DJ (1999) The pharmacological profile of GABA receptors on cultured insect neurones. J Insect Physiol 45:213–219
Bazhenov M, Stopfer M, Rabinovich M, Abarbanel HD, Sejnowski TJ, Laurent G (2001a) Model of cellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe. Neuron 30:569–581
Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel HD, Sejnowski TJ, Laurent G (2001b) Model of transient oscillatory synchronization in the locust antennal lobe. Neuron 30:553–567
Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3:728–739
Benson JA (1988) Bicuculline blocks the response to acetylcholine and nicotine but not to muscarine or GABA in isolated insect neuronal somata. Brain Res 458:65–71
Benson JA (1992) Electrophysiological pharmacology of the nicotinic and muscarinic cholinergic responses of isolated neuronal somata from locust thoracic ganglia. J Exp Biol 170:230–233
Bicker G (1999) Histochemistry of classical neurotransmitters in antennal lobes and mushroom bodies of the honeybee. Microsc Res Tech 45:174–183
Bicker G, Schäfer S, Kingan TG (1985) Mushroom body feedback interneurones in the honeybee show GABA-like immunoreactivity. Brain Res 360:394–397
Bicker G, Schäfer S, Ottersen OP, Storm-Mathisen J (1988) Glutamate-like immunoreactivity in identified neuronal populations of insect nervous systems. J Neurosci 8:2108–2122
Bidaut M (1980) Pharmacological dissection of pyloric network of the lobster stomatogastric ganglion using picrotoxin. J Neurophysiol 44:1089–1101
Bornhauser BC, Meyer EP (1997) Histamine-like immunoreactivity in the visual system and brain of an orthopteran and a hymenopteran insect. Cell Tissue Res 287:211–221
Buckingham SD, Hosie AM, Roush RL, Sattelle DB (1994a) Actions of agonists and convulsant antagonists on a Drosophila melanogaster GABA receptor (Rdl) homo-oligomer expressed in Xenopus oocytes. Neurosci Lett 181:137–140
Buckingham SD, Hue B, Sattelle DB (1994b) Actions of bicuculline on cell body and neuropilar membranes of identified insect neurones. J Exp Biol 186:235–244
Chiang AS, Lin WY, Liu HP, Pszczolkowski MA, Fu TF, Chiu SL, Holbrook GL (2002a) Insect NMDA receptors mediate juvenile hormone biosynthesis. Proc Natl Acad Sci USA 99:37–42
Chiang AS, Pszczolkowski MA, Liu HP, Lin SC (2002b) Ionotropic glutamate receptors mediate juvenile hormone synthesis in the cockroach, Diploptera punctata. Insect Biochem Mol Biol 32:669–678
Christensen TA, Waldrop BR, Hildebrand JG (1998) Multitasking in the olfactory system: context-dependent responses to odors reveal dual GABA-regulated coding mechanisms in single olfactory projection neurons. J Neurosci 18:5999–6008
Cleland TA (1996) Inhibitory glutamate receptor channels. Mol Neurobiol 13:97–136
Cleland TA, Selverston AI (1995) Glutamate-gated inhibitory currents of central pattern generator neurons in the lobster stomatogastric ganglion. J Neurosci 15:6631–6639
Cleland TA, Selverston AI (1998) Inhibitory glutamate receptor channels in cultured lobster stomatogastric neurons. J Neurophysiol 79:3189–3196
Courjaret R, Lapied B (2001) Complex intracellular messenger pathways regulate one type of neuronal alpha-bungarotoxin-resistant nicotinic acetylcholine receptors expressed in insect neurosecretory cells (dorsal unpaired median neurons). Mol Pharmacol 60:80–91
Cull-Candy SG (1976) Two types of extrajunctional L-glutamate receptors in locust muscle fibres. J Physiol 255:449–464
Cull-Candy SG, Usherwood PN (1973) Two populations of L-glutamate receptors on locust muscle fibres. Nat New Biol 246:62–64
Cully DF, Vassilatis DK, Liu KK, Paress PS, Van der Ploeg LH, Schaeffer JM, Arena JP (1994) Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371:707–711
Cully DF, Paress PS, Liu KK, Schaeffer JM, Arena JP (1996) Identification of a Drosophila melanogaster glutamate-gated chloride channel sensitive to the antiparasitic agent avermectin. J Biol Chem 271:20187–20191
Dacher M, Lagarrigue A, Gauthier M (2005) Antennal tactile learning in the honeybee: effect of nicotinic antagonists on memory dynamics. Neuroscience 130:37–50
Déglise P, Grünewald B, Gauthier M (2002) The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci Lett 321:13–16
Delgado R, Barla R, Latorre R, Labarca P (1989) L-glutamate activates excitatory and inhibitory channels in Drosophila larval muscle. FEBS Lett 243:337–342
Devaud JM, Quenet B, Gascuel J, Masson C (1994) A morphometric classification of pupal honeybee antennal lobe neurones in culture. Neuroreport 6:214–218
Distler P (1989) Histochemical demonstration of GABA-like immunoreactivity in cobalt labeled neuron individuals in the insect olfactory pathway. Histochemistry 91:245–249
Distler P (1990a) GABA-immunohistochemistry as a label for identifying types of local interneurons and their synaptic contacts in the antennal lobes of the American cockroach. Histochemistry 93:617–626
Distler P (1990b) Synaptic connections of dopamine-immunoreactive neurons in the antennal lobes of Periplaneta americana. Colocalization with GABA-like immunoreactivity. Histochemistry 93:401–408
Distler PG, Boeckh J (1996) Synaptic connection between olfactory receptor cells and uniglomerular projection neurons in the antennal lobe of the American cockroach, Periplaneta americana. J Comp Neurol 370:35–46
Distler PG, Boeckh J (1997a) Synaptic connections between identified neuron types in the antennal lobe glomeruli of the cockroach, Periplaneta americana: I. Uniglomerular projection neurons. J Comp Neurol 378:307–319
Distler PG, Boeckh J (1997b) Synaptic connections between identified neuron types in the antennal lobe glomeruli of the cockroach, Periplaneta americana: II. Local multiglomerular interneurons. J Comp Neurol 383:529–540
Distler PG, Boeckh J (1998) An improved model of the synaptic organization of insect olfactory glomeruli. Ann N Y Acad Sci 855:508–510
Duan S, Cooke IM (2000) Glutamate and GABA activate different receptors and Cl(−) conductances in crab peptide-secretory neurons. J Neurophysiol 83:31–37
Dubas F (1991) Actions of putative amino acid neurotransmitters in the neuropile arborizations of locust flight motoneurones. J Exp Biol 155:337–356
Dwoskin LP, Crooks PA (2001) Competitive neuronal nicotinic receptor antagonists: a new direction for drug discovery. J Pharmacol Exp Ther 298:395–402
Esslen J, Kaissling K-E (1976) Zahl und Verteilung antennaler Sensillen bei der Honigbiene (Apis mellifera L.). Zoomorphology 83:227–251
Etter A, Cully DF, Liu KK, Reiss B, Vassilatis DK, Schaeffer JM, Arena JP (1999) Picrotoxin blockade of invertebrate glutamate-gated chloride channels: subunit dependence and evidence for binding within the pore. J Neurochem 72:318–326
Ffrench-Constant RH, Mortlock DP, Shaffer CD, MacIntyre RJ, Roush RT (1991) Molecular cloning and transformation of cyclodiene resistance in Drosophila: an invertebrate gamma-aminobutyric acid subtype A receptor locus. Proc Natl Acad Sci USA 88:7209–7213
Fiala A, Spall T, Diegelmann S, Eisermann B, Sachse S, Devaud JM, Buchner E, Galizia CG (2002) Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons. Curr Biol 12:1877–1884
Gallo V, Haydar T (2003) GABA: exciting again in its own right. J Physiol 550:665
Gascuel J, Masson C (1991) A quantitative ultrastructural study of the honeybee antennal lobe. Tissue Cell 23:341–355
Goldberg F, Grünewald B, Rosenboom H, Menzel R (1999) Nicotinic acetylcholine currents of cultured Kenyon cells from the mushroom bodies of the honey bee Apis mellifera. J Physiol 514:759–768
Grolleau F, Sattelle DB (2000) Single channel analysis of the blocking actions of BIDN and fipronil on a Drosophila melanogaster GABA receptor (RDL) stably expressed in a Drosophila cell line. Br J Pharmacol 130:1833–1842
Grünewald B (2003) Differential expression of voltage-sensitive K+ and Ca2+ currents in neurons of the honeybee olfactory pathway. J Exp Biol 206:117–129
Guez D, Belzunces LP, Maleszka R (2003) Effects of imidacloprid metabolites on habituation in honeybees suggest the existence of two subtypes of nicotinic receptors differentially expressed during adult development. Pharmacol Biochem Behav 75:217–222
Gundelfinger ED, Schulz R (2000) Insect nicotinic acetylcholine receptors: genes, structure, physiological and pharmacological properties. In: Handbook of experimental pharmacology, Neuronal nicotinic receptors 144:496–521
Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100
Harvey RJ, Schmitt B, Hermans-Borgmeyer I, Gundelfinger ED, Betz H, Darlison MG (1994) Sequence of a Drosophila ligand-gated ion-channel polypeptide with an unusual amino-terminal extracellular domain. J Neurochem 62:2480–2483
Henderson JE, Soderlund DM, Knipple DC (1993) Characterization of a putative gamma-aminobutyric acid (GABA) receptor beta subunit gene from Drosophila melanogaster. Biochem Biophys Res Commun 193:474–482
Hermsen B, Stetzer E, Thees R, Heiermann R, Schrattenholz A, Ebbinghaus U, Kretschmer A, Methfessel C, Reinhardt S, Maelicke A (1998) Neuronal nicotinic receptors in the locust Locusta migratoria. Cloning and expression. J Biol Chem 273:18394–18404
Homberg U (1984) Processing of antennal information in extrinsic mushroom body neurons of the bee brain. J Comp Phys 154:825–836
Homberg U (2002) Neurotransmitters and neuropeptides in the brain of the locust. Microsc Res Tech 56:189–209
Homberg U, Hildebrand JG (1991) Histamine-immunoreactive neurons in the midbrain and suboesophageal ganglion of sphinx moth Manduca sexta. J Comp Neurol 307:647–657
Homberg U, Kingan TG, Hildebrand JG (1987) Immunocytochemistry of GABA in the brain and suboesophageal ganglion of Manduca sexta. Cell Tissue Res 248:1–24
Horoszok L, Raymond V, Sattelle DB, Wolstenholme AJ (2001) GLC-3: a novel fipronil and BIDN-sensitive, but picrotoxinin-insensitive, L-glutamate-gated chloride channel subunit from Caenorhabditis elegans. Br J Pharmacol 132:1247–1254
Hosie AM, Sattelle DB (1996) Agonist pharmacology of two Drosophila GABA receptor splice variants. Br J Pharmacol 119:1577–1585
Hosie AM, Baylis HA, Buckingham SD, Sattelle DB (1995) Actions of the insecticide fipronil, on dieldrin-sensitive and -resistant GABA receptors of Drosophila melanogaster. Br J Pharmacol 115:909–912
Hosie AM, Aronstein K, Sattelle DB, ffrench-Constant RH (1997) Molecular biology of insect neuronal GABA receptors. Trends Neurosci 20:578–583
Ikeda T, Zaho X, Salgado VL, Kono Y, Yeh JZ, Narahashi T (2003) Fipronil modulation of glutamate-induced chloride currents in cockroach thoracic ganglion neurons. NeuroToxicol 24:807–815
Jackson C, Bermudez I, Beadle DJ (2002) Pharmacological properties of nicotinic acetylcholine receptors in isolated Locusta migratoria neurones. Microsc Res Tech 56:249–255
Joerges J, Küttner A, Galizia CG, Menzel R (1997) Representations of odours and odour mixtures visualized in the honeybee brain. Nature 387:285–288
Kehoe J (1994) Glutamate activates a K+ conductance increase in Aplysia neurons that appears to be independent of G proteins. Neuron 13:691–702
Kirchhof BS, Mercer AR (1997) Antennal lobe neurons of the honey bee, Apis mellifera, express a D2-like dopamine receptor in vitro. J Comp Neurol 383:189–198
Kloppenburg P, Kirchhof BS, Mercer AR (1999) Voltage-activated currents from adult honeybee (Apis mellifera) antennal motor neurons recorded in vitro and in situ. J Neurophysiol 81:39–48
Kreissl S, Bicker G (1989) Histochemistry of acetylcholinesterase and immunocytochemistry of an acetylcholine receptor-like antigen in the brain of the honeybee. J Comp Neurol 286:71–84
Kreissl S, Bicker G (1992) Dissociated neurons of the pupal honeybee brain in cell culture. J Neurocytol 21:545–556
Lapied B, Le Corronc H, Hue B (1990) Sensitive nicotinic and mixed nicotinic-muscarinic receptors in insect neurosecretory cells. Brain Res 533:132–136
Laurent G, Davidowitz H (1994) Encoding of olfactory information with oscillating neural assemblies. Science 265:1872–1875
Laurent G, Naraghi M (1994) Odorant-induced oscillations in the mushroom bodies of the locust. J Neurosci 14:2993–3004
Laurent S, Masson C, Jakob I (2002) Whole-cell recording from honeybee olfactory receptor neurons: ionic currents, membrane excitability and odourant response in developing workerbee and drone. Eur J Neurosci 15:1139–1152
Le Corronc H, Alix P, Hue B (2002) Differential sensitivity of two insect GABA-gated chloride channels to dieldrin, fipronil and picrotoxin. J Insect Physiol 48:419–431
Le Novere N, Corringer PJ, Changeux JP (2002) The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J Neurobiol 53:447–456
Leitch B, Laurent G (1996) GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. J Comp Neurol 372:487–514
Linster C, Smith BH (1997) A computational model of the response of honey bee antennal lobe circuitry to odor mixtures: overshadowing, blocking and unblocking can arise from lateral inhibition. Behav Brain Res 87:1–14
Loesel R, Homberg U (1999) Histamine-immunoreactive neurons in the brain of the cockroach Leucophaea maderae. Brain Res 842:408–418
Ludmerer SW, Warren VA, Williams BS, Zheng Y, Hunt DC, Ayer MB, Wallace MA, Chaudhary AG, Egan MA, Meinke PT, Dean DC, Garcia ML, Cully DF, Smith MM (2002) Ivermectin and nodulisporic acid receptors in Drosophila melanogaster contain both gamma-aminobutyric acid-gated Rdl, glutamate-gated GluCl alpha chloride channel subunits. Biochemistry 41:6548–6560
MacLeod K, Laurent G (1996) Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies. Science 274:976–979
Malun D (1991a) Inventory and distribution of synapses of identified uniglomerular projection neurons in the antennal lobe of Periplaneta americana. J Comp Neurol 305:348–360
Malun D (1991b) Synaptic relationships between GABA-immunoreactive neurons and an identified uniglomerular projection neuron in the antennal lobe of Periplaneta americana: a double-labeling electron microscopic study. Histochemistry 96:197–207
Marder E, Eisen JS (1984) Transmitter identification of pyloric neurons: electrically coupled neurons use different transmitters. J Neurophysiol 51:1345–1361
Marder E, Paupardin-Tritsch D (1978) The pharmacological properties of some crustacean neuronal acetylcholine, gamma-aminobutyric acid, and L-glutamate responses. J Physiol 280:213–236
Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 22:573–580
Müller D, Abel R, Brandt R, Zöckler M (2002) Differential parallel processing of olfactory information in the honeybee, Apis mellifera L. J Comp Phys A 188:359–370
Nässel DR (1999) Histamine in the brain of insects: a review. Microsc Res Tech 44:121–136
Nauen R, Ebbinghaus-Kintscher U, Schmuck R (2001) Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). Pest Manag Sci 57:577–586
Oleskevich S (1999) Cholinergic synaptic transmission in insect mushroom bodies in vitro. J Neurophysiol 82:1091–1096
Osborne RH (1996) Insect neurotransmission: neurotransmitters and their receptors. Pharmacol Ther 69:117–142
Pelz C, Jander J, Rosenboom H, Hammer M, Menzel R (1999) IA in Kenyon cells of the mushroom body of honeybees resembles shaker currents: kinetics, modulation by K+, and simulation. J Neurophysiol 81:1749–1759
Pemberton DJ, Franks CJ, Walker RJ, Holden-Dye L (2001) Characterization of glutamate-gated chloride channels in the pharynx of wild-type and mutant Caenorhabditis elegans delineates the role of the subunit GluCl-alpha2 in the function of the native receptor. Mol Pharmacol 59:1037–1043
Pinnock RD, Lummis SC, Chiappinelli VA, Sattelle DB (1988) Kappa-bungarotoxin blocks an alpha-bungarotoxin-sensitive nicotinic receptor in the insect central nervous system. Brain Res 458:45–52
Pirvola U, Tuomisto L, Yamatodani A, Panula P (1988) Distribution of histamine in the cockroach brain and visual system: an immunocytochemical and biochemical study. J Comp Neurol 276:514–526
Rauh JJ, Lummis SC, Sattelle DB (1990) Pharmacological and biochemical properties of insect GABA receptors. Trends Pharmacol Sci 11:325–329
Raymond V, Sattelle DB (2002) Novel animal-health drug targets from ligand-gated chloride channels. Nat Rev Drug Discov 1:427–436
Raymond V, Sattelle DB, Lapied B (2000) Co-existence in DUM neurones of two GluCl channels that differ in their picrotoxin sensitivity. Neuroreport 11:2695–2701
Rybak J (1994) Die strukturelle Organisation der Pilzkörper und synaptische Konnektivität protocerebraler Interneurone im Gehirn der Honigbiene, Apis mellifera. Eine licht-und elektronenmikroskopische Studie. PhD Thesis, Freie Universität
Sachse S, Galizia CG (2002) Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J Neurophysiol 87:1106–1117
Sattelle DB (1992) Receptors for L-glutamate and GABA in the nervous system of an insect (Periplaneta americana). Comp Biochem Physiol C 103:429–438
Sattelle DB, Lummis SC, Wong JF, Rauh JJ (1991) Pharmacology of insect GABA receptors. Neurochem Res 16:363–374
Sattelle DB, Culetto E, Grauso M, Raymond V, Franks CJ, Towers P (2002) Functional genomics of ionotropic acetylcholine receptors in Caenorhabditis elegans and Drosophila melanogaster. Novartis Found Symp 245:240–257
Schäfer S, Bicker G (1986) Distribution of GABA-like immunoreactivity in the brain of the honeybee. J Comp Neurol 246:287–300
Schäfer S, Rosenboom H, Menzel R (1994) Ionic currents of Kenyon cells from the mushroom body of the honeybee. J Neurosci 14:4600–4612
Scheidler A, Kaulen P, Bruning G, Erber J (1990) Quantitative autoradiographic localization of [125I]alpha-bungarotoxin binding sites in the honeybee brain. Brain Res 534:332–335
Schürmann FW, Ottersen OP, Honegger HW (2000) Glutamate-like immunoreactivity marks compartments of the mushroom bodies in the brain of the cricket. J Comp Neurol 418:227–239
Stopfer M, Laurent G (1999) Short-term memory in olfactory network dynamics. Nature 402:664–668
Stopfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390:70–74
Sun XJ, Tolbert LP, Hildebrand JG (1997) Synaptic organization of the uniglomerular projection neurons of the antennal lobe of the moth Manduca sexta: a laser scanning confocal and electron microscopic study. J Comp Neurol 379:2–20
Tareilus E, Hanke W, Breer H (1990) Neuronal acetylcholine receptor channels from insects: a comparative electrophysiological study. J Comp Physiol A 167:521–526
Thany SH, Crozatier M, Raymond-Delpech V, Gauthier M, Lenaers G (2005) Apisα2, Apisα7–1 and Apisα7–2 three new neuronal nicotinic acetylcholine receptor subunits in the brain of the honeybee Apis mellifera. Gene 344C:125–132
Tomizawa M, Casida JE (2001) Structure and diversity of insect nicotinic acetylcholine receptors. Pest Manag Sci 57:914–922
Tornoe C, Bai D, Holden-Dye L, Abramson SN, Sattelle DB (1995) Actions of neurotoxins (bungarotoxins, neosurugatoxin and lophotoxins) on insect and nematode nicotinic acetylcholine receptors. Toxicon 33:411–424
Van Eyseren I, Guillet JC, Le Guen J, Tiaho F, Pichon Y (1998) Effects of nicotinic and muscarinic ligands on embryonic neurones of Periplaneta americana in primary culture: a whole cell clamp study. J Insect Physiol 44:227–240
Vassilatis DK, Arena JP, Plasterk RH, Wilkinson HA, Schaeffer JM, Cully DF, Van der Ploeg LH (1997) Genetic and biochemical evidence for a novel avermectin-sensitive chloride channel in Caenorhabditis elegans. Isolation and characterization. J Biol Chem 272:33167–33174
Wafford KA, Bai D, Sepulveda MI, Sattelle B (1991) L-Glutamate receptors in the insect central nervous system. Excitatory amino acids 275–278
Waldrop B, Hildebrand JG (1989) Physiology and pharmacology of acetylcholinergic responses of interneurons in the antennal lobes of the moth Manduca sexta. J Comp Physiol A 164:433–441
Waldrop B, Christensen TA, Hildebrand JG (1987) GABA-mediated synaptic inhibition of projection neurons in the antennal lobes of the sphinx moth, Manduca sexta. J Comp Physiol A 161:23–32
Wang DD, Krueger DD, Bordey A (2003) GABA depolarizes neuronal progenitors of the postnatal subventricular zone via GABAA receptor activation. J Physiol 550:785–800
Ward JM, Cockcroft VB, Lunt GG, Smillie FS, Wonnacott S (1990) Methyllycaconitine: a selective probe for neuronal alpha-bungarotoxin binding sites. FEBS Lett 270:45–48
Watanabe S, Kawahara S, Kirino Y (1999) Glutamate induces Cl− and K+ currents in the olfactory interneurons of terrestrial slug. J Comp Physiol A 184:553–562
Wersing A, Grünewald B (2002) Ionotropic GABA and glutamate receptors in cultured honeybee Kenyon cells. Eur J Neurosci Abstr 1:216.11
Witthöft W (1967) Absolute Anzahl und Verteilung der Zellen im Hirn der Honigbiene. Z Morph Tiere 61:160–184
Yasuyama K, Salvaterra PM (1999) Localization of choline acetyltransferase-expressing neurons in Drosophila nervous system. Microsc Res Tech 45:65–79
Zhang HG, Lee HJ, Rocheleau T, ffrench-Constant RH, Jackson MB (1995) Subunit composition determines picrotoxin and bicuculline sensitivity of Drosophila gamma-aminobutyric acid receptors. Mol Pharmacol 48:835–840
Zhao X, Salgado VL, Yeh JZ, Narahashi T (2003) Differential actions of fipronil and dieldrin insecticides on GABA-gated chloride channels in cockroach neurons. J Pharmacol Exp Ther 206:914–924
Zhao X, Yeh JZ, Salgado VL, Narahashi T (2004) Fipronil is a potent open channel blocker of glutamate-activated chloride channels in cockroach neurons. J Pharmacol Exp Ther 310:192–201
Acknowledgements
We are grateful to Dr. Valerie Raymond for critically reading the manuscript, Dr. Randolf Menzel for fruitful discussions. The authors thank Marion Ganz for technical assistance with cell cultures of antennal lobe neurons; Dr. Martin Giurfa for financial support. Thanks to Marc Moreau and Catherine Leclerc for technical support. G. Barbara was supported by a doctoral grant from the French Ministry of Scientific Research and Education. This work was performed at the Freie Universität Berlin and was funded by PRESCOT, the Région Midi-Pyrénées and a DAAD/MAE PROCOPE grant D/9910368/00352UE.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Barbara, G.S., Zube, C., Rybak, J. et al. Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera . J Comp Physiol A 191, 823–836 (2005). https://doi.org/10.1007/s00359-005-0007-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00359-005-0007-3