[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Stationary Distribution, Extinction and Probability Density Function of a Stochastic Vegetation–Water Model in Arid Ecosystems

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we study a three-dimensional stochastic vegetation–water model in arid ecosystems, where the soil water and the surface water are considered. First, for the deterministic model, the possible equilibria and the related local asymptotic stability are studied. Then, for the stochastic model, by constructing some suitable stochastic Lyapunov functions, we establish sufficient conditions for the existence and uniqueness of an ergodic stationary distribution \(\varpi (\cdot )\). In a biological interpretation, the existence of the distribution \(\varpi (\cdot )\) implies the long-term persistence of vegetation under certain conditions. Taking the stochasticity into account, a quasi-positive equilibrium \(\overline{D}^*\) related to the vegetation-positive equilibrium of the deterministic model is defined. By solving the relevant Fokker–Planck equation, we obtain the approximate expression of the distribution \(\varpi (\cdot )\) around the equilibrium \(\overline{D}^*\). In addition, we obtain sufficient condition \(\mathscr {R}_0^E<1\) for vegetation extinction. For practical application, we further estimate the probability of vegetation extinction at a given time. Finally, based on some actual vegetation data from Wuwei in China and Sahel, some numerical simulations are provided to verify our theoretical results and study the impact of stochastic noise on vegetation dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Beddington, J.R., May, R.M.: Harvesting natural populations in a randomly fluctuating environment. Science 197(4302), 463–465 (1977)

    Article  Google Scholar 

  • Cai, Y., Kang, Y., Wang, W.: A stochastic SIRS epidemic model with nonlinear incidence rate. Appl. Math. Comput. 305, 221–240 (2017)

    MathSciNet  MATH  Google Scholar 

  • Chen, Z., Wua, Y., Feng, G., Qian, Z., Sun, G.: Effects of global warming on pattern dynamics of vegetation: Wuwei in China as a case. Appl. Math. Comput. 390, 125666 (2021)

    MathSciNet  MATH  Google Scholar 

  • Cox, P.M., Betts, R.A., Jones, C.D., et al.: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000)

    Article  Google Scholar 

  • Dai, A.: Increasing drought under global warming in observations and models. Nat. Clim. Change 3(1), 52–58 (2013)

    Article  Google Scholar 

  • Gao, M., Jiang, D., Hayat, T., Alsaedi, A.: Stationary distribution and extinction for a food chain chemostat model with random peturbation. Math. Meth. Appl. Sci. 44, 1013–1028 (2021)

    Article  MATH  Google Scholar 

  • Gard, T.C.: Introduction to Stochastic Differential Equations. Marcel Dekker INC, New York (1988)

    MATH  Google Scholar 

  • Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  • Gilad, E., von Hardenberg, J., Provenzale, A., et al.: A mathematical model of plants as ecosystems engineers. J. Theor. Biol. 244, 680–691 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Guttal, V., Jayaprakash, C.: Impact of noise on bistable ecological systems. Ecol. Model. 201, 420–8 (2007)

    Article  MATH  Google Scholar 

  • Guttal, V., Jayaprakash, C.: Changing skewness: an early warning signal of regime shifts in ecosystems. Ecol. Lett. 11, 450–60 (2008)

    Article  Google Scholar 

  • Han, Q., Yang, T., Zeng, C., et al.: Impact of time delays on stochastic resonance in an ecological system describing vegetation. Phys. A 408, 96–105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Han, B., Jiang, D., Hayat, T., et al.: Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second-order perturbation. Chaos Soliton Fract. 140, 110238 (2020)

    Article  MathSciNet  Google Scholar 

  • Han, B., Jiang, D., Zhou, B., et al.: Stationary distribution and probability density function of a stochastic SIRSI epidemic model with saturation incidence rate and logistic growth. Chaos Soliton Fract. 142(5), 110519 (2020)

    MathSciNet  Google Scholar 

  • Hautier, Y., Tilman, D., Isbell, F., et al.: Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348(6232), 336–340 (2015)

    Article  Google Scholar 

  • Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, J., Ji, M., Xie, Y., et al.: Global semi-arid climate change over last 60 years. Clim. Dyn. 46, 1131–1150 (2016)

    Article  Google Scholar 

  • Ikeda, N., Watanade, S.: A comparison theorem for solutions of stochastic differential equations and its applications. Osaka J. Math. 14, 619–633 (1977)

    MathSciNet  Google Scholar 

  • Imhof, L., Walcher, S.: Exclusion and persistence in deterministic and stochastic chemostat models. J. Differ. Equ. 217, 26–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Kefi, S., Rietkerka, M., Katul, G.G.: Vegetation pattern shift as a result of rising atmospheric \(\text{ CO}_2\) in arid ecosystems. Theor. Popu. Biol. 74, 332–344 (2008)

    Article  MATH  Google Scholar 

  • Kefi, S., Eppinga, M.B., de Ruiter, P.C., Rietkerk, M.: Bistability and regular spatial patterns in arid ecosystems. Theor. Ecol. 3, 257–269 (2010)

    Article  Google Scholar 

  • Khasminskii, R.: Stochastic Stability of Differential Equations. Springer, Berlin (2011)

    MATH  Google Scholar 

  • Li, X., Liu, X., Ma, Z.: Analysis on the drought characteristics in the main arid regions in the world since recent hundred-odd years. Arid Zone Res. 21, 97–103 (2004)

    Google Scholar 

  • Lin, Y., Jiang, D.: Threshold behavior in a stochastic SIS epidemic model with standard incidence. J. Dyn. Differ. Equ. 26(4), 1079–1094 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Lipster, R.: A strong law of large numbers for local martingales. Stochastics 3, 217–228 (1980)

    Article  MathSciNet  Google Scholar 

  • Liu, Q., Jiang, D.: Periodic solution and stationary distribution of stochastic predator-prey models with higher-order perturbation. J. Nonlinear Sci. 28, 423–442 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, Q., Jiang, D., Hayat, T., et al.: Dynamics of a stochastic predator-prey model with stage structure for predator and Holling Type II functional response. J. Nonlinear Sci. 28, 1151–1187 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, C., Li, L., Wang, Z., Wang, R.: Pattern transitions in a vegetation system with cross-diffusion. Appl. Math. Comput. 342, 255–262 (2019)

    MathSciNet  MATH  Google Scholar 

  • Liu, Q., Jiang, D., Hayat, T., et al.: Stationary distribution and extinction of a stochastic HIV-1 infection model with distributed delay and logistic growth. J. Nonlinear. Sci. 30(1), 369–395 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, G., Qi, H., Chang, Z., Meng, X.: Asymptotic stability of a stochastic May mutualism system. Comput. Math. Appl. 79(3), 735–745 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • London, N., Unep, N.: United nations convention to combat desertification in countries experiencing serious drought and/or desertification, particularly in Africa. Document A/AC. 241/27, 12. 09. 1994 with Annexes, New York, NY (1994)

  • Ma, Z., Zhou, Y., Li, C.: Qualitative and Stability Methods for Ordinary Differential Equations. Science Press, Beijing (2015). (in Chinese)

  • Mao, X.: Stochastic Differential Equations and Applications. Horwood Publishing, Chichester (1997)

    MATH  Google Scholar 

  • Marinov, K., Wang, T., Yang, Y.: On a vegetation pattern formation model governed by a nonlinear parabolic system. Nonlinear Anal. Real World Appl. 14, 507–525 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • May, R.M.: Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269(5628), 471–477 (1977)

    Article  Google Scholar 

  • Nguyen, D.H., Yin, G., Zhu, C.: Long-term analysis of a stochastic SIRS model with general incidence rates. SIAM J. Appl. Math. 80, 814–838 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Pan, S., Zhang, Q., Anke, M.: Near-optimal control of a stochastic vegetation–water system with reaction diffusion. Math. Meth. Appl. Sci. 43(9), 6043–6061 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Pan, S., Zhang, Q., Anke, M.: Stationary distribution of a stochastic vegetation–water system with reaction–diffusion. Appl. Math. Lett. 123, 107589 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Roozen, H.: An asymptotic solution to a two-dimensional exit problem arising in population dynamics. SIAM J. Appl. Math. 49, 1793 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Saco, P.M., Willgoose, G.R., Hancock, G.R.: Eco-geomorphology of banded vegetation patterns in arid and semi-arid regions. Hydrol. Earth Syst. Sci. 11, 1717–1730 (2007)

    Article  Google Scholar 

  • Shnerb, N.M., Sarah, P., Lavee, H., Solomon, S.: Reactive glass and vegetation patterns. Phys. Rev. Lett. 90(3), 038101 (2003)

    Article  Google Scholar 

  • Sun, G., Li, L., Zhang, Z.: Spatial dynamics of a vegetation model in an arid flat environment. Nonlinear Dyn. 73(4), 2207–2219 (2013)

    Article  MathSciNet  Google Scholar 

  • Wang, F., Wang, X., Zhang, S., Ding, C.: On pulse vaccine strategy in a periodic stochastic SIR epidemic model. Chaos Soliton Fract. 66, 127–135 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, D., Liu, Y., Cai, Z., et al.: The spatial and temporal distribution of carbon dioxide over China based on GOSAT observations. Chin. J. Atmos. Sci. 40(3), 541–550 (2016)

    Google Scholar 

  • Zhang, X., Yuan, R.: A stochastic chemostat model with mean-reverting Ornstein–Uhlenbeck process and Monod–Haldane response function. Appl. Math. Comput. 394, 125833 (2021)

    MathSciNet  MATH  Google Scholar 

  • Zhang, H., Zhang, T.: The stationary distribution of a microorganism flocculation model with stochastic perturbation. Appl. Math. Lett. 103, 106217 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, H., Xu, W., Lei, Y., Qiao, Y.: Early warning and basin stability in a stochastic vegetation–water dynamical system. Commun. Nonlinear. Sci. Numer. Simul. 77, 258–270 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, H., Liu, X., Xu, W.: Threshold dynamics and pulse control of a stochastic ecosystem with switching parameters. J. Frankl. Inst. 358(1), 516–532 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, H., Xu, W., Han, P., Qiao, Y.: Stochastic dynamic balance of a bi-stable vegetation model with pulse control. Phys. A 556, 124809 (2020)

    Article  MathSciNet  Google Scholar 

  • Zhang, H., Xu, W., Guo, Q., et al.: First escape probability and mean first exit time for a time-delayed ecosystem driven by non-Gaussian colored noise. Chaos Soliton Fract. 135, 109767 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, Y., Yuan, S., Ma, J.: Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted environment. Bull. Math. Biol. 77(7), 1285–1326 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, B., Jiang, D., Dai, Y., et al.: Stationary distribution and probability density function of a stochastic SVIS epidemic model with standard incidence and vacinnation. Chaos Soliton Fract. 143, 110601 (2021)

    Article  Google Scholar 

  • Zhou, B., Han, B., Jiang, D., et al.: Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching. Appl. Math. Comput. 410, 126388 (2021)

    MathSciNet  MATH  Google Scholar 

  • Zhu, C., Yin, G.: Asymptotic properties of hybrid diffusion systems. SIAM J. Control. Optim. 46, 1155–1179 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Zu, L., Jiang, D., O’Regan, D., et al.: Ergodic property of a Lotka–Volterra predator-prey model with white noise higher order perturbation under regime switching. Appl. Math. Comput. 330, 93–102 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 11871473) and Shandong Provincial Natural Science Foundation (No. ZR2019MA010, ZR2019MA006).

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Philipp M Altrock.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. (Local stability of system (1.1))

Appendix A. (Local stability of system (1.1))

In this section, we will focus on the local stability of the equilibria \(D_0\) and \(D^*\) of system (1.1).

Theorem A.1

If \({\mathscr {R}}_0<1\), the vegetation-free equilibrium \(D_0\) of system (1.1) is locally asymptotically stable (LAS), but it is unstable when \({\mathscr {R}}_0>1\).

Proof

The Jacobi matrix of system (1.1) at the equilibrium \(D_0\) is

$$\begin{aligned} J(D_0)=\left( \begin{array}{ccc} R_\mathrm{esp}({\mathscr {R}}_0-1) &{} \quad 0 &{} \quad 0 \\ \frac{R(1-w_0)}{k_2w_0}-\frac{q\gamma R_\mathrm{esp}{\mathscr {R}}_0}{c} &{} \quad -r_w &{} \quad \alpha w_0 \\ -\frac{R(1-w_0)}{k_2w_0} &{} \quad 0 &{} \quad -\alpha w_0 \end{array}\right) . \end{aligned}$$

By direct calculation, the characteristic polynomial of \(D_0\) is

$$\begin{aligned} \phi _{J(D_0)}(y)=[y-R_\mathrm{esp}({\mathscr {R}}_0-1)](y+r_w)(y+\alpha w_0). \end{aligned}$$

Clearly, \(J(D_0)\) has three real eigenvalues \(y_1=R_\mathrm{esp}({\mathscr {R}}_0-1)\), \(y_2=-r_w<0\) and \(y_3=-\alpha w_0<0\). If \({\mathscr {R}}_0<1\), then \(J(D_0)\in {\overline{RH}}(3)\). Combining Definition 2.1 and the Routh–Hurwitz criterion (Ma et al. 2015), we obtain that \(E_0\) is LAS when \({\mathscr {R}}_0<1\). Conversely, if \({\mathscr {R}}_0>1\), we get that \(y_1=R_\mathrm{esp}({\mathscr {R}}_0-1)>0\), implying that \(D_0\) is unstable. This completes the proof of Theorem A.1. \(\square \)

Next, we define a critical value by

$$\begin{aligned} {\mathscr {R}}_1=\Bigl [\frac{c(R+r_\mathrm{w}k_1)({\mathscr {R}}_0-1)}{q\gamma (c\alpha _2 g_{\mathrm{co}_2}-R_\mathrm{esp})}+k_2w_0\Bigr ]^2-\frac{ck_2R(1-w_0)}{q\alpha \gamma }. \end{aligned}$$

Theorem A.2

If \({\mathscr {R}}_0>1\) and \({\mathscr {R}}_1\ge 0\), the vegetation-positive equilibrium \(D^*\) is LAS.

Proof

Similar to Theorem A.1, the Jacobi matrix of system (1.1) at the equilibrium \(D^*\) is

$$\begin{aligned} J(D^*)= & {} \left( \begin{array}{ccc} 0 &{} \quad \frac{c\alpha _2g_{\mathrm{co}_2}k_1P^*}{(W^*+k_1)^2} &{} \quad 0 \\ \frac{\alpha k_2(1-w_0)S^*}{(P^*+k_2)^2}-\frac{q\alpha _2\gamma g_{\mathrm{co}_2}W^*}{W^*+k_1} &{} \quad -\frac{q\alpha _2\gamma g_{\mathrm{co}_2}k_1P^*}{(W^*+k_1)^2}-r_w &{} \quad \frac{\alpha (P^*+k_2w_0)}{P^*+k_2} \\ -\frac{\alpha k_2(1-w_0)S^*}{(P^*+k_2)^2} &{} \quad 0 &{} \quad -\frac{\alpha (P^*+k_2w_0)}{P^*+k_2} \end{array}\right) \\:= & {} \left( \begin{array}{ccc} 0 &{} \quad a_{12} &{} \quad 0 \\ a_{21} &{} \quad -a_{22} &{} \quad a_{23} \\ a_{31} &{} \quad 0 &{} \quad -a_{23} \end{array} \right) , \end{aligned}$$

where \(a_{12}=\frac{c\alpha _2g_{\mathrm{co}_2}k_1P^*}{(W^*+k_1)^2}>0\), \(a_{21}=\frac{\alpha k_2(1-w_0)S^*}{(P^*+k_2)^2}-\frac{q\alpha _2\gamma g_{\mathrm{co}_2}W^*}{W^*+k_1}\), \(a_{22}=\frac{q\alpha _2\gamma g_{\mathrm{co}_2}k_1P^*}{(W^*+k_1)^2}+r_w>0\), \(a_{23}=\frac{\alpha (P^*+k_2w_0)}{P^*+k_2}>0\) and \(a_{31}=\frac{\alpha k_2(1-w_0)S^*}{(P^*+k_2)^2}>0\). A direct calculation shows that

$$\begin{aligned} \phi _{J(D^*)}(y)=y^3+l_1y^2+l_2y+l_3, \end{aligned}$$

where \(l_1=a_{22}+a_{23}>0\), \(l_2=a_{22}a_{23}-a_{12}a_{21}\) and \(l_3=a_{12}a_{23}(a_{31}-a_{21})\).

If \({\mathscr {R}}_0>1\), we determine that \(P^*=\frac{c(R+r_\mathrm{w}k_1)({\mathscr {R}}_0-1)}{q\gamma (c\alpha _2g_{\mathrm{co}_2}-R_\mathrm{esp})}\) and \(a_{31}-a_{21}=\frac{q\alpha _2\gamma g_{\mathrm{co}_2}W^*}{W^*+k_1}>0\), which means that \(l_3>0\). Moreover, if \({\mathscr {R}}_1\ge 0\), by the equality \(R=\frac{\alpha (P^*+k_2w_0)S^*}{P^*+k_2}\), we have

$$\begin{aligned} \begin{aligned} a_{22}a_{23}-a_{12}a_{31}=&\frac{\alpha (P^*+k_2w_0)}{P^*+k_2}\Bigl [\frac{q\alpha _2\gamma g_{\mathrm{co}_2}k_1P^*}{(W^*+k_1)^2}+r_w\Bigr ]\\&-\frac{c\alpha _2g_{\mathrm{co}_2}k_1k_2R(1-w_0)P^*}{(W^*+k_1)^2(P^*+k_2)(P^*+k_2w_0)}\\ \ge&\frac{q\alpha \alpha _2\gamma g_{\mathrm{co}_2}k_1P^*}{(W^*+k_1)^2(P^*+k_2)(P^*+k_2w_0)}\\&\Bigl [(P^*+k_2w_0)^2-\frac{ck_2R(1-w_0)}{q\alpha \gamma }\Bigr ]\\\ =&\frac{q\alpha \alpha _2\gamma g_{\mathrm{co}_2}k_1P^*{\mathscr {R}}_1}{(W^*+k_1)^2(P^*+k_2)(P^*+k_2w_0)}\ge 0. \end{aligned} \end{aligned}$$

Combined with \(a_{21}<a_{31}\), we obtain that \(l_2=a_{22}a_{23}-a_{12}a_{21}>a_{22}a_{23}-a_{12}a_{31}\ge 0\) and

$$\begin{aligned} l_1l_2-l_3=a_{22}l_2+a_{23}(a_{22}a_{23}-a_{12}a_{31})\ge a_{22}l_2>0. \end{aligned}$$

According to the Routh–Hurwitz criterion, we determine that \(J(D^*)\in {\overline{RH}}(3)\). Thus, \(D^*\) is LAS when \({\mathscr {R}}_0>1\) and \({\mathscr {R}}_1\ge 0\). This completes the proof of Theorem A.2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Han, B., Jiang, D. et al. Stationary Distribution, Extinction and Probability Density Function of a Stochastic Vegetation–Water Model in Arid Ecosystems. J Nonlinear Sci 32, 30 (2022). https://doi.org/10.1007/s00332-022-09789-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-022-09789-7

Keywords

Mathematics Subject Classification

Navigation