Abstract
This article is devoted to the analysis of the dynamics of a complex network of unstable reaction–diffusion systems. We demonstrate the existence of a non-empty parameter regime for which synchronization occurs in non-trivial attractors. We establish a lower bound of the dimension of the global attractor in an innovative manner, by proving a novel theorem of continuity of the unstable manifold, for which we invoke a principle of spectrum perturbation of non-bounded operators. Finally, we exhibit a co-dimension 2 bifurcation of the unstable manifold which shows that synchronization is compatible with instabilities.
Similar content being viewed by others
Notes
Consider \(X = {\mathbb {R}}\), \(A = [0,\,1]\) and \(B_m = \lbrace \tfrac{k}{m}~;~0 \le k \le m \rbrace \) for each integer \(m>0\). Then, it holds that \(\dim _H A = 1\), \(\dim _H B_m = 0\) for all \(m>0\), whereas \(\mathrm {dist}_H(A,\,B_m) \rightarrow 0\) as \(m \rightarrow \infty \).
References
Adams, R., Fournier, J.: Sobolev spaces, vol. 140. Academic press (2003)
Aida, M., Tsujikawa, T., Efendiev, M., Yagi, A., Mimura, M.: Lower estimate of the attractor dimension for a chemotaxis growth system. J. Lond. Math. Soc. 74(2), 453–474 (2006)
Ambrosio, B., Aziz-Alaoui, M., Phan, V.: Large time behaviour and synchronization of complex networks of reaction-diffusion systems of FitzHugh-Nagumo type. IMA J. Appl. Math. 84, 416 (2019)
Aziz-Alaoui, M.: Synchronization of chaos. Encycl. Math. Phys. 5, 213–226 (2006)
Bennett, M., Schatz, M.F., Rockwood, H., Wiesenfeld, K.: Huygens’s clocks. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 458(2019), 563–579 (2002)
Cantin, G.: Non identical coupled networks with a geographical model for human behaviors during catastrophic events. Int. J. Bifurc. Chaos 27(14), 1750213 (2017)
Cantin, G., Aziz-Alaoui, M.: Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Commu. Pure Appl. Anal. 20(2), 623–650 (2021)
Cantin, G., Verdière, N., Aziz-Alaoui, M.: Large time dynamics in complex networks of reaction-diffusion systems applied to a panic model. IMA J. Appl. Math. 84, 974 (2019)
Caraballo, T., Langa, J.A., Robinson, J.C.: Upper semicontinuity of attractors for small random perturbations of dynamical systems. Commun. Partial Differ. Equ. 23(9–10), 1557–1581 (1998)
Carvalho, A.N., Langa, J.A.: Non-autonomous perturbation of autonomous semilinear differential equations: continuity of local stable and unstable manifolds. J. Differ. Eq. 233(2), 622–653 (2007)
Collins, J.J., Stewart, I.N.: Coupled nonlinear oscillators and the symmetries of animal gaits. J. Nonlinear Sci. 3(1), 349–392 (1993)
Eden, A., Foias, C., Nicolaenko, B., Temam, R.: Exponential attractors for dissipative evolution equations. Research in Applied Mathematics, (1994)
Efendiev, M., Miranville, A., Zelik, S.: Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation. In: Proc. R. Soc. A, volume 460, pages 1107–1129. The Royal Society, (2004)
Efendiev, M., Nakaguchi, E., Osaki, K.: Dimension estimate of the exponential attractor for the chemotaxis-growth system. Glasgow Math. J. 50(3), 483–497 (2008)
Efendiev, M., Zelik, S., Miranville, A.: Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems. Proc. R. Soc. Edinb. Sect. A Math. 135(4), 703–730 (2005)
Fellner, K., Morgan, J., Tang, B.Q.: Global classical solutions to quadratic systems with mass control in arbitrary dimensions. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 37, 281–307 (2020)
Fellner, K., Prager, W., Tang, B.Q.: The entropy method for reaction-diffusion systems without detailed balance: first order chemical reaction networks. Kinet. Relat. Models 10(4), 1055 (2017)
Gal, C.G.: Sharp estimates for the global attractor of scalar reaction-diffusion equations with a Wentzell boundary condition. J. Nonlinear Sci. 22(1), 85–106 (2012)
Golubitsky, M., Nicol, M., Stewart, I.: Some curious phenomena in coupled cell networks. J. Nonlinear Sci. 14(2), 207–236 (2004)
Hassard, B.D., Hassard, B., Kazarinoff, N.D., Wan, Y.-H., Wan, Y.W.: Theory and Applications of Hopf Bifurcation, volume 41. CUP Archive, (1981)
Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (2013)
Keener, J.P., Tyson, J.J.: Spiral waves in the Belousov-Zhabotinskii reaction. Phys. D Nonlinear Phenom. 21(2–3), 307–324 (1986)
Kocarev, L., Tasev, Z., Parlitz, U.: Synchronizing spatiotemporal chaos of partial differential equations. Phys. Rev. Lett. 79(1), 51 (1997)
Kuramoto, Y.: Chemical turbulence. In: Chemical Oscillations, Waves, and Turbulence, pages 111–140. Springer, (1984)
Ladyzhenskaya, O.: Attractors for Semi-groups and Evolution Equations. CUP Archive, Cambridge (1991)
Marion, M.: Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems. SIAM J. Math. Anal. 20(4), 816–844 (1989)
Marsden, J.E., McCracken, M.: The Hopf Bifurcation and its Applications. Springer, Berlin (2012)
Medvedev, G.S.: Synchronization of coupled limit cycles. J. Nonlinear Sci. 21(3), 441–464 (2011)
Murray, J.: Mathematical Biology I: An Introduction. Interdisciplinary Applied Mathematics, vol. 17. Springer, New York, NY, USA (2002)
Pierre, M.: Global existence in reaction-diffusion systems with control of mass: a survey. Milan J. Math. 78(2), 417–455 (2010)
Poignard, C., Pade, J.P., Pereira, T.: The effects of structural perturbations on the synchronizability of diffusive networks. J. Nonlinear Sci. 29(5), 1919–1942 (2019)
Ricard, M.R., Mischler, S.: Turing instabilities at Hopf bifurcation. J. Nonlinear Sci. 19(5), 467–496 (2009)
Schleicher, D.: Hausdorff dimension, its properties, and its surprises. Am. Math. Mon. 114(6), 509–528 (2007)
Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Springer, Berlin (1994)
Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, Berlin (2012)
Turing, A.: The chemical basis of morphogenesis: philosophical transactions of the royal society of London. Ser. B Biol. Sci. 237(641), 37–72 (1952)
Yagi, A.: Abstract Parabolic Evolution Equations and Their Applications. Springer, Berlin (2009)
Yagi, A., Osaki, K., Sakurai, T.: Exponential attractors for Belousov-Zhabotinskii reaction model. Discrete and Continuous Dynamical Systems-Series A, pages 846–856, (2009)
Acknowledgements
The authors wish to express their sincere gratitude to the anonymous reviewers for their valuable comments which greatly improved the presentation of the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Sue Ann Campbell.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Miranville, A., Cantin, G. & Aziz-Alaoui, M.A. Bifurcations and Synchronization in Networks of Unstable Reaction–Diffusion Systems. J Nonlinear Sci 31, 44 (2021). https://doi.org/10.1007/s00332-021-09701-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00332-021-09701-9