[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Bifurcations and Synchronization in Networks of Unstable Reaction–Diffusion Systems

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

This article is devoted to the analysis of the dynamics of a complex network of unstable reaction–diffusion systems. We demonstrate the existence of a non-empty parameter regime for which synchronization occurs in non-trivial attractors. We establish a lower bound of the dimension of the global attractor in an innovative manner, by proving a novel theorem of continuity of the unstable manifold, for which we invoke a principle of spectrum perturbation of non-bounded operators. Finally, we exhibit a co-dimension 2 bifurcation of the unstable manifold which shows that synchronization is compatible with instabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Consider \(X = {\mathbb {R}}\), \(A = [0,\,1]\) and \(B_m = \lbrace \tfrac{k}{m}~;~0 \le k \le m \rbrace \) for each integer \(m>0\). Then, it holds that \(\dim _H A = 1\), \(\dim _H B_m = 0\) for all \(m>0\), whereas \(\mathrm {dist}_H(A,\,B_m) \rightarrow 0\) as \(m \rightarrow \infty \).

References

  • Adams, R., Fournier, J.: Sobolev spaces, vol. 140. Academic press (2003)

  • Aida, M., Tsujikawa, T., Efendiev, M., Yagi, A., Mimura, M.: Lower estimate of the attractor dimension for a chemotaxis growth system. J. Lond. Math. Soc. 74(2), 453–474 (2006)

    Article  MathSciNet  Google Scholar 

  • Ambrosio, B., Aziz-Alaoui, M., Phan, V.: Large time behaviour and synchronization of complex networks of reaction-diffusion systems of FitzHugh-Nagumo type. IMA J. Appl. Math. 84, 416 (2019)

    Article  MathSciNet  Google Scholar 

  • Aziz-Alaoui, M.: Synchronization of chaos. Encycl. Math. Phys. 5, 213–226 (2006)

    Article  Google Scholar 

  • Bennett, M., Schatz, M.F., Rockwood, H., Wiesenfeld, K.: Huygens’s clocks. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 458(2019), 563–579 (2002)

  • Cantin, G.: Non identical coupled networks with a geographical model for human behaviors during catastrophic events. Int. J. Bifurc. Chaos 27(14), 1750213 (2017)

    Article  MathSciNet  Google Scholar 

  • Cantin, G., Aziz-Alaoui, M.: Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Commu. Pure Appl. Anal. 20(2), 623–650 (2021)

    Article  MathSciNet  Google Scholar 

  • Cantin, G., Verdière, N., Aziz-Alaoui, M.: Large time dynamics in complex networks of reaction-diffusion systems applied to a panic model. IMA J. Appl. Math. 84, 974 (2019)

    Article  MathSciNet  Google Scholar 

  • Caraballo, T., Langa, J.A., Robinson, J.C.: Upper semicontinuity of attractors for small random perturbations of dynamical systems. Commun. Partial Differ. Equ. 23(9–10), 1557–1581 (1998)

    Article  MathSciNet  Google Scholar 

  • Carvalho, A.N., Langa, J.A.: Non-autonomous perturbation of autonomous semilinear differential equations: continuity of local stable and unstable manifolds. J. Differ. Eq. 233(2), 622–653 (2007)

    Article  MathSciNet  Google Scholar 

  • Collins, J.J., Stewart, I.N.: Coupled nonlinear oscillators and the symmetries of animal gaits. J. Nonlinear Sci. 3(1), 349–392 (1993)

    Article  MathSciNet  Google Scholar 

  • Eden, A., Foias, C., Nicolaenko, B., Temam, R.: Exponential attractors for dissipative evolution equations. Research in Applied Mathematics, (1994)

  • Efendiev, M., Miranville, A., Zelik, S.: Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation. In: Proc. R. Soc. A, volume 460, pages 1107–1129. The Royal Society, (2004)

  • Efendiev, M., Nakaguchi, E., Osaki, K.: Dimension estimate of the exponential attractor for the chemotaxis-growth system. Glasgow Math. J. 50(3), 483–497 (2008)

    Article  MathSciNet  Google Scholar 

  • Efendiev, M., Zelik, S., Miranville, A.: Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems. Proc. R. Soc. Edinb. Sect. A Math. 135(4), 703–730 (2005)

  • Fellner, K., Morgan, J., Tang, B.Q.: Global classical solutions to quadratic systems with mass control in arbitrary dimensions. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 37, 281–307 (2020)

    Article  MathSciNet  Google Scholar 

  • Fellner, K., Prager, W., Tang, B.Q.: The entropy method for reaction-diffusion systems without detailed balance: first order chemical reaction networks. Kinet. Relat. Models 10(4), 1055 (2017)

    Article  MathSciNet  Google Scholar 

  • Gal, C.G.: Sharp estimates for the global attractor of scalar reaction-diffusion equations with a Wentzell boundary condition. J. Nonlinear Sci. 22(1), 85–106 (2012)

    Article  MathSciNet  Google Scholar 

  • Golubitsky, M., Nicol, M., Stewart, I.: Some curious phenomena in coupled cell networks. J. Nonlinear Sci. 14(2), 207–236 (2004)

    Article  MathSciNet  Google Scholar 

  • Hassard, B.D., Hassard, B., Kazarinoff, N.D., Wan, Y.-H., Wan, Y.W.: Theory and Applications of Hopf Bifurcation, volume 41. CUP Archive, (1981)

  • Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (2013)

    Google Scholar 

  • Keener, J.P., Tyson, J.J.: Spiral waves in the Belousov-Zhabotinskii reaction. Phys. D Nonlinear Phenom. 21(2–3), 307–324 (1986)

    Article  MathSciNet  Google Scholar 

  • Kocarev, L., Tasev, Z., Parlitz, U.: Synchronizing spatiotemporal chaos of partial differential equations. Phys. Rev. Lett. 79(1), 51 (1997)

    Article  Google Scholar 

  • Kuramoto, Y.: Chemical turbulence. In: Chemical Oscillations, Waves, and Turbulence, pages 111–140. Springer, (1984)

  • Ladyzhenskaya, O.: Attractors for Semi-groups and Evolution Equations. CUP Archive, Cambridge (1991)

    Book  Google Scholar 

  • Marion, M.: Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems. SIAM J. Math. Anal. 20(4), 816–844 (1989)

    Article  MathSciNet  Google Scholar 

  • Marsden, J.E., McCracken, M.: The Hopf Bifurcation and its Applications. Springer, Berlin (2012)

    MATH  Google Scholar 

  • Medvedev, G.S.: Synchronization of coupled limit cycles. J. Nonlinear Sci. 21(3), 441–464 (2011)

    Article  MathSciNet  Google Scholar 

  • Murray, J.: Mathematical Biology I: An Introduction. Interdisciplinary Applied Mathematics, vol. 17. Springer, New York, NY, USA (2002)

  • Pierre, M.: Global existence in reaction-diffusion systems with control of mass: a survey. Milan J. Math. 78(2), 417–455 (2010)

    Article  MathSciNet  Google Scholar 

  • Poignard, C., Pade, J.P., Pereira, T.: The effects of structural perturbations on the synchronizability of diffusive networks. J. Nonlinear Sci. 29(5), 1919–1942 (2019)

    Article  MathSciNet  Google Scholar 

  • Ricard, M.R., Mischler, S.: Turing instabilities at Hopf bifurcation. J. Nonlinear Sci. 19(5), 467–496 (2009)

    Article  MathSciNet  Google Scholar 

  • Schleicher, D.: Hausdorff dimension, its properties, and its surprises. Am. Math. Mon. 114(6), 509–528 (2007)

    Article  MathSciNet  Google Scholar 

  • Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Springer, Berlin (1994)

    Book  Google Scholar 

  • Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, Berlin (2012)

    Google Scholar 

  • Turing, A.: The chemical basis of morphogenesis: philosophical transactions of the royal society of London. Ser. B Biol. Sci. 237(641), 37–72 (1952)

    MATH  Google Scholar 

  • Yagi, A.: Abstract Parabolic Evolution Equations and Their Applications. Springer, Berlin (2009)

    MATH  Google Scholar 

  • Yagi, A., Osaki, K., Sakurai, T.: Exponential attractors for Belousov-Zhabotinskii reaction model. Discrete and Continuous Dynamical Systems-Series A, pages 846–856, (2009)

Download references

Acknowledgements

The authors wish to express their sincere gratitude to the anonymous reviewers for their valuable comments which greatly improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Cantin.

Additional information

Communicated by Sue Ann Campbell.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranville, A., Cantin, G. & Aziz-Alaoui, M.A. Bifurcations and Synchronization in Networks of Unstable Reaction–Diffusion Systems. J Nonlinear Sci 31, 44 (2021). https://doi.org/10.1007/s00332-021-09701-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-021-09701-9

Keywords

Mathematics Subject Classification

Navigation