Abstract
In this paper the Turing pattern formation mechanism of a two components reaction-diffusion system modeling the Schnakenberg chemical reaction is considered. In Ref. (Madzavamuse et al., J Math Biol 70(4):709–743, 2015) it was shown how the presence of linear cross-diffusion terms favors the destabilization of the constant steady state. We perform the weakly nonlinear multiple scales analysis to derive the equations for the amplitude of the Turing patterns and to show how the cross-diffusion coefficients influence the occurrence of super-critical or sub-critical bifurcations. We present a numerical exploration of far from equilibrium regimes and prove the existence of multistable stationary solutions.
Similar content being viewed by others
References
Aragon, J., Barrio, R., Woolley, T., Baker, R., Maini, P.: Nonlinear effects on Turing patterns: time oscillations and chaos. Phys. Rev. E 86(2), 026201 (2012). doi:10.1103/PhysRevE.86.026201
Atis, S., Saha, S., Auradou, H., Salin, D., Talon, L.: Autocatalytic reaction fronts inside a porous medium of glass spheres. Phys. Rev. Lett. 110(14), 148301 (2013)
Barbera, E., Consolo, G., Valenti, G.: Spread of infectious diseases in a hyperbolic reaction-diffusion susceptible-infected-removed model. Phys. Rev. E 88(5), 052719 (2013)
Barreira, R., Elliott, C.M., Madzvamuse, A.: The surface finite element method for pattern formation on evolving biological surfaces. J. Math. Biol. 63(6), 1095–1119 (2011)
Bilotta, E., Pantano, P.: Emergent patterning phenomena in \({2D}\) cellular automata. Artif. Life 11(3), 339–362 (2005)
Bilotta, E., Pantano, P., Stranges, F.: A gallery of Chua attractors: part II. Int. J. Bifurcat. Chaos 17(02), 293–380 (2007)
Bozzini, B., Gambino, G., Lacitignola, D., Lupo, S., Sammartino, M., Sgura, I.: Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth. Comput. Math. Appl. 70, 1948–1969 (2015)
Cangelosi, R., Wollkind, D., Kealy-Dichone, B., Chaiya, I.: Nonlinear stability analysis of Turing patterns for a mussel-algae model. J. Math. Biol. 1–46 (2014)
Capone, F., De Luca, R., Rionero, S.: On the stability of non-autonomous perturbed Lotka-Volterra models. Appl. Math. Comput. 219(12), 6868–6881 (2013)
Chattopadhyay, J., Tapaswi, P.: Effect of cross-diffusion on pattern formation—a nonlinear analysis. Acta Appl. Math. 48, 1–12 (1997)
Galiano, G., Selgas, V.: On a cross-diffusion segregation problem arising from a model of interacting particles. Nonlinear Anal. Real World Appl. 18, 34–49 (2014)
Galiano, G., Velasco, J.: Finite element approximation of a surface-subsurface coupled problem arising in forest dynamics. Math. Comput. Simul. 102, 62–75 (2014)
Gambino, G., Lombardo, M., Sammartino, M.: Global linear feedback control for the generalized Lorenz system. Chaos Solitons Fractals 29(4), 829–837 (2006)
Gambino, G., Lombardo, M., Sammartino, M.: Adaptive control of a seven mode truncation of the Kolmogorov flow with drag. Chaos Solitons Fractals 41(1), 47–59 (2009)
Gambino, G., Lombardo, M., Sammartino, M.: Pattern formation driven by cross-diffusion in a 2D domain. Nonlinear Anal. Real World Appl. 14(3), 1755–1779 (2013)
Gambino, G., Lombardo, M., Sammartino, M.: Turing instability and pattern formation for the Lengyel–Epstein system with nonlinear diffusion. Acta Appl. Math. 1–12 (2014)
Gambino, G., Lombardo, M.C., Sammartino, M.: Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion. Math. Comput. Simul. 82(6), 1112–1132 (2012)
Gambino, G., Lombardo, M.C., Sammartino, M., Sciacca, V.: Turing pattern formation in the Brusselator system with nonlinear diffusion. Phys. Rev. E 88, 042–925 (2013)
Gambino, G., Sciacca, V.: Intermittent and passivity based control strategies for a hyperchaotic system. Appl. Math. Comput. 221, 367–382 (2013)
Ghergu, M., Radulescu, V.: Turing patterns in general reaction-diffusion systems of Brusselator type. Commun. Contemp. Math. 12(04), 661–679 (2010)
Kolokolnikov, T., Erneux, T., Wei, J.: Mesa-type patterns in the one-dimensional Brusselator and their stability. Physica D 214(1), 63–77 (2006)
Kolokolnikov, T., Ward, M., Wei, J.: Self-replication of mesa patterns in reaction-diffusion systems. Phys. D 236(2), 104–122 (2007)
Lacitignola, D., Bozzini, B., Sgura, I.: Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay. Eur. J. Appl. Math. 26(2), 143–173 (2015)
Lin, Z., Ruiz-Baier, R., Tian, C.: Finite volume element approximation of an inhomogeneous Brusselator model with cross-diffusion. J. Comput. Phys. 256, 806–823 (2014)
Madzavamuse, A., Ndakwo, H., Barreira, R.: Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations. J. Math. Biol. 70(4), 709–743 (2015)
Medina, V., Champneys, A.: Subcritical Turing bifurcation and the morphogenesis of localized patterns. Phys. Rev. E 90, 032,923–1–6 (2014)
Mulone, G., Rionero, S., Wang, W.: The effect of density-dependent dispersal on the stability of populations. Nonlinear Anal. 74(14), 4831–4846 (2011)
Mulone, G., Straughan, B.: Nonlinear stability for diffusion models in biology. SIAM J. Appl. Math. 69(6), 1739–1758 (2009)
Rionero, S.: \({L}^2\)-energy decay of convective nonlinear PDEs reaction-diffusion systems via auxiliary ODEs systems. Ricerche di Matematica 64(2), 251–287 (2015)
Ruiz-Baier, R., Tian, C.: Mathematical analysis and numerical simulation of pattern formation under cross-diffusion. Nonlinear Anal. Real World Appl. 14(1), 601–612 (2013)
Satulovsky, J.: Lattice Lotka–Volterra models and negative cross-diffusion. J. Theor. Biol. 183, 381–389 (1996)
Tian, C., Lin, Z., Pedersen, M.: Instability induced by cross-diffusion in reaction-diffusion systems. Nonlinear Anal. Real World Appl. 11(2), 1036–1045 (2010)
Tian, C., Ling, Z., Lin, Z.: Spatial patterns created by cross-diffusion for a three-species food chain model. Int. J. Biomath 07(02), 1450,013 (2014)
Tulumello, E., Lombardo, M., Sammartino, M.: Cross-diffusion driven instability in a predator-prey with cross-diffusion. Acta Appl. Math. 132, 621–633 (2014)
Vanag, V., Epstein, I.: Cross-diffusion and pattern formation in reaction-diffusion systems. Phys. Chem. Chem. Phys. 897–912 (2009)
Vilas, C., Garcia, M., Banga, J., Alonso, A.: Robust feed-back control of travelling waves in a class of reaction-diffusion distributed biological systems. Phys. D 237(18), 2353–2364 (2008)
Yi, F., Wei, J., Shi, J.: Diffusion-driven instability and bifurcation in the Lengyel–Epstein system. Nonlinear Anal. Real World Appl. 9(3), 1038–1051 (2008)
Zemskov, E.P., Kassner, K., Hauser, M.J.B., Horsthemke, W.: Turing space in reaction-diffusion systems with density-dependent cross diffusion. Phys. Rev. E 87, 032,906 (2013)
Acknowledgments
The work of GG and SL was partially supported by GNFM-INdAM through a Progetto Giovani Grant. The work of MCL and MS was partially supported by GNFM-INdAM. The authors thank the anonymous reviewer for the comments and the suggestions that helped improve the paper.
Author information
Authors and Affiliations
Corresponding author
Appendix: The quintic Stuart–Landau equation
Appendix: The quintic Stuart–Landau equation
Taking into account that (24) still holds for the amplitude A (although now the derivative with respect to T is a partial derivative), the solvability condition \(\left\langle \mathbf{G}, \mathbf{\psi } \right\rangle =0\) for (19) is satisfied and the solution is:
where the expression for the vectors \(\mathbf{w}_{3i}, i=1, 2, 3\) can be computed solving the following linear systems:
where we have defined \(L_{i}=\varGamma J-i^2k_c^2D^{d_c}\).
At \(O(\varepsilon ^4)\) the resulting equation is \( \mathcal {L}^{d_c} \mathbf{w}_3=\mathbf {H}\), where:
and:
The solvability condition for is automatically satisfied and the solution is:
where the vector \(\mathbf{w}_{4i}\), \(i=1,\ldots ,4\), are the solutions of the following linear systems:
At \(O(\varepsilon ^5)\) the resulting equation is \(\mathcal {L}^{d_c} \mathbf{w}_3=\mathbf {P}\), where:
and:
Putting:
the Fredholm alternative \(\left\langle \mathbf{P}, {\varvec{\psi }}\right\rangle \) for the Eq. (31) leads to:
Adding up (33) to (24) one gets (26), with:
Rights and permissions
About this article
Cite this article
Gambino, G., Lombardo, M.C., Lupo, S. et al. Super-critical and sub-critical bifurcations in a reaction-diffusion Schnakenberg model with linear cross-diffusion. Ricerche mat 65, 449–467 (2016). https://doi.org/10.1007/s11587-016-0267-y
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11587-016-0267-y