[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Super-critical and sub-critical bifurcations in a reaction-diffusion Schnakenberg model with linear cross-diffusion

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In this paper the Turing pattern formation mechanism of a two components reaction-diffusion system modeling the Schnakenberg chemical reaction is considered. In Ref. (Madzavamuse et al., J Math Biol 70(4):709–743, 2015) it was shown how the presence of linear cross-diffusion terms favors the destabilization of the constant steady state. We perform the weakly nonlinear multiple scales analysis to derive the equations for the amplitude of the Turing patterns and to show how the cross-diffusion coefficients influence the occurrence of super-critical or sub-critical bifurcations. We present a numerical exploration of far from equilibrium regimes and prove the existence of multistable stationary solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aragon, J., Barrio, R., Woolley, T., Baker, R., Maini, P.: Nonlinear effects on Turing patterns: time oscillations and chaos. Phys. Rev. E 86(2), 026201 (2012). doi:10.1103/PhysRevE.86.026201

    Article  Google Scholar 

  2. Atis, S., Saha, S., Auradou, H., Salin, D., Talon, L.: Autocatalytic reaction fronts inside a porous medium of glass spheres. Phys. Rev. Lett. 110(14), 148301 (2013)

    Article  Google Scholar 

  3. Barbera, E., Consolo, G., Valenti, G.: Spread of infectious diseases in a hyperbolic reaction-diffusion susceptible-infected-removed model. Phys. Rev. E 88(5), 052719 (2013)

    Article  Google Scholar 

  4. Barreira, R., Elliott, C.M., Madzvamuse, A.: The surface finite element method for pattern formation on evolving biological surfaces. J. Math. Biol. 63(6), 1095–1119 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bilotta, E., Pantano, P.: Emergent patterning phenomena in \({2D}\) cellular automata. Artif. Life 11(3), 339–362 (2005)

    Article  Google Scholar 

  6. Bilotta, E., Pantano, P., Stranges, F.: A gallery of Chua attractors: part II. Int. J. Bifurcat. Chaos 17(02), 293–380 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bozzini, B., Gambino, G., Lacitignola, D., Lupo, S., Sammartino, M., Sgura, I.: Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth. Comput. Math. Appl. 70, 1948–1969 (2015)

    Article  MathSciNet  Google Scholar 

  8. Cangelosi, R., Wollkind, D., Kealy-Dichone, B., Chaiya, I.: Nonlinear stability analysis of Turing patterns for a mussel-algae model. J. Math. Biol. 1–46 (2014)

  9. Capone, F., De Luca, R., Rionero, S.: On the stability of non-autonomous perturbed Lotka-Volterra models. Appl. Math. Comput. 219(12), 6868–6881 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Chattopadhyay, J., Tapaswi, P.: Effect of cross-diffusion on pattern formation—a nonlinear analysis. Acta Appl. Math. 48, 1–12 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Galiano, G., Selgas, V.: On a cross-diffusion segregation problem arising from a model of interacting particles. Nonlinear Anal. Real World Appl. 18, 34–49 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Galiano, G., Velasco, J.: Finite element approximation of a surface-subsurface coupled problem arising in forest dynamics. Math. Comput. Simul. 102, 62–75 (2014)

    Article  MathSciNet  Google Scholar 

  13. Gambino, G., Lombardo, M., Sammartino, M.: Global linear feedback control for the generalized Lorenz system. Chaos Solitons Fractals 29(4), 829–837 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gambino, G., Lombardo, M., Sammartino, M.: Adaptive control of a seven mode truncation of the Kolmogorov flow with drag. Chaos Solitons Fractals 41(1), 47–59 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gambino, G., Lombardo, M., Sammartino, M.: Pattern formation driven by cross-diffusion in a 2D domain. Nonlinear Anal. Real World Appl. 14(3), 1755–1779 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gambino, G., Lombardo, M., Sammartino, M.: Turing instability and pattern formation for the Lengyel–Epstein system with nonlinear diffusion. Acta Appl. Math. 1–12 (2014)

  17. Gambino, G., Lombardo, M.C., Sammartino, M.: Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion. Math. Comput. Simul. 82(6), 1112–1132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gambino, G., Lombardo, M.C., Sammartino, M., Sciacca, V.: Turing pattern formation in the Brusselator system with nonlinear diffusion. Phys. Rev. E 88, 042–925 (2013)

    Article  Google Scholar 

  19. Gambino, G., Sciacca, V.: Intermittent and passivity based control strategies for a hyperchaotic system. Appl. Math. Comput. 221, 367–382 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Ghergu, M., Radulescu, V.: Turing patterns in general reaction-diffusion systems of Brusselator type. Commun. Contemp. Math. 12(04), 661–679 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kolokolnikov, T., Erneux, T., Wei, J.: Mesa-type patterns in the one-dimensional Brusselator and their stability. Physica D 214(1), 63–77 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kolokolnikov, T., Ward, M., Wei, J.: Self-replication of mesa patterns in reaction-diffusion systems. Phys. D 236(2), 104–122 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lacitignola, D., Bozzini, B., Sgura, I.: Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay. Eur. J. Appl. Math. 26(2), 143–173 (2015)

    Article  MathSciNet  Google Scholar 

  24. Lin, Z., Ruiz-Baier, R., Tian, C.: Finite volume element approximation of an inhomogeneous Brusselator model with cross-diffusion. J. Comput. Phys. 256, 806–823 (2014)

    Article  MathSciNet  Google Scholar 

  25. Madzavamuse, A., Ndakwo, H., Barreira, R.: Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations. J. Math. Biol. 70(4), 709–743 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Medina, V., Champneys, A.: Subcritical Turing bifurcation and the morphogenesis of localized patterns. Phys. Rev. E 90, 032,923–1–6 (2014)

    Google Scholar 

  27. Mulone, G., Rionero, S., Wang, W.: The effect of density-dependent dispersal on the stability of populations. Nonlinear Anal. 74(14), 4831–4846 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mulone, G., Straughan, B.: Nonlinear stability for diffusion models in biology. SIAM J. Appl. Math. 69(6), 1739–1758 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rionero, S.: \({L}^2\)-energy decay of convective nonlinear PDEs reaction-diffusion systems via auxiliary ODEs systems. Ricerche di Matematica 64(2), 251–287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ruiz-Baier, R., Tian, C.: Mathematical analysis and numerical simulation of pattern formation under cross-diffusion. Nonlinear Anal. Real World Appl. 14(1), 601–612 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Satulovsky, J.: Lattice Lotka–Volterra models and negative cross-diffusion. J. Theor. Biol. 183, 381–389 (1996)

    Article  Google Scholar 

  32. Tian, C., Lin, Z., Pedersen, M.: Instability induced by cross-diffusion in reaction-diffusion systems. Nonlinear Anal. Real World Appl. 11(2), 1036–1045 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tian, C., Ling, Z., Lin, Z.: Spatial patterns created by cross-diffusion for a three-species food chain model. Int. J. Biomath 07(02), 1450,013 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tulumello, E., Lombardo, M., Sammartino, M.: Cross-diffusion driven instability in a predator-prey with cross-diffusion. Acta Appl. Math. 132, 621–633 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vanag, V., Epstein, I.: Cross-diffusion and pattern formation in reaction-diffusion systems. Phys. Chem. Chem. Phys. 897–912 (2009)

  36. Vilas, C., Garcia, M., Banga, J., Alonso, A.: Robust feed-back control of travelling waves in a class of reaction-diffusion distributed biological systems. Phys. D 237(18), 2353–2364 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yi, F., Wei, J., Shi, J.: Diffusion-driven instability and bifurcation in the Lengyel–Epstein system. Nonlinear Anal. Real World Appl. 9(3), 1038–1051 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zemskov, E.P., Kassner, K., Hauser, M.J.B., Horsthemke, W.: Turing space in reaction-diffusion systems with density-dependent cross diffusion. Phys. Rev. E 87, 032,906 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The work of GG and SL was partially supported by GNFM-INdAM through a Progetto Giovani Grant. The work of MCL and MS was partially supported by GNFM-INdAM. The authors thank the anonymous reviewer for the comments and the suggestions that helped improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sammartino.

Appendix: The quintic Stuart–Landau equation

Appendix: The quintic Stuart–Landau equation

Taking into account that (24) still holds for the amplitude A (although now the derivative with respect to T is a partial derivative), the solvability condition \(\left\langle \mathbf{G}, \mathbf{\psi } \right\rangle =0\) for (19) is satisfied and the solution is:

$$\begin{aligned} \mathbf w _3=\left( A\mathbf{w}_{31}+A^3 \mathbf{w}_{32}\right) \cos {(k_c x)} +A^3 \mathbf{w}_{33}\cos {(3 k_c x)}\, , \end{aligned}$$
(28)

where the expression for the vectors \(\mathbf{w}_{3i}, i=1, 2, 3\) can be computed solving the following linear systems:

$$\begin{aligned} L_1\mathbf{w}_{31}=\sigma {\mathbf {r}}+\mathbf {G}_1^{(1)}, \quad L_2\mathbf{w}_{32}\!=\!-L{\mathbf {r}}\!+\!\mathbf {G}_1^{(3)}, \quad L_3\mathbf{w}_{33}\!=\!\mathbf {G}_3, \end{aligned}$$

where we have defined \(L_{i}=\varGamma J-i^2k_c^2D^{d_c}\).

At \(O(\varepsilon ^4)\) the resulting equation is \( \mathcal {L}^{d_c} \mathbf{w}_3=\mathbf {H}\), where:

$$\begin{aligned} \mathbf{H}&=2A\frac{\partial A}{\partial T_2}{\mathbf {w}_{20}}+A^2\mathbf{H}_0^{(2)}+A^4\mathbf{H}_0^{(4)}+\left( 2A\frac{\partial A}{\partial T}{\mathbf {w}_{22}}+A^2\mathbf{H}_2^{(2)}+A^4\mathbf{H}_2^{(4)}\right) \cos (2\bar{k}_cx)\\&\quad +A^4\mathbf{H}_4^{(4)}\cos (4\bar{k}_cx), \end{aligned}$$

and:

$$\begin{aligned} \mathbf{H}_0^{(2)}&= \displaystyle \frac{1}{2}\gamma \begin{pmatrix} \frac{2b}{(a+b)^2}+2(a+b)M&{}\quad 2(a+b) \\ -\frac{2b}{(a+b)^2}-2(a+b)M &{}\quad -2(a+b) \end{pmatrix}{\mathbf {w}_{31}},\\ \mathbf{H}_0^{(4)}&= \displaystyle \frac{1}{2}\gamma \begin{pmatrix} \frac{2b}{(a+b)^2}+2(a+b)M &{}\quad 2(a+b) \\ -\frac{2b}{(a+b)^2}-2(a+b)M &{}\quad -2(a+b) \end{pmatrix} {\mathbf {w}_{32}}\\&\quad \ +\gamma \begin{pmatrix} \frac{b}{(a+b)^2}{\mathbf {w}_{20}}(1)+2(a+b){\mathbf {w}_{20}}(2)+M &{}\quad \frac{1}{2}\\ -\frac{b}{(a+b)^2}{\mathbf {w}_{20}}(1)-2(a+b){\mathbf {w}_{20}}(2)-M &{}\quad -\frac{1}{2} \end{pmatrix} {\mathbf {w}_{20}}\\&\quad \ +\displaystyle \frac{1}{2}\gamma \begin{pmatrix} \frac{b}{(a+b)^2}{\mathbf {w}_{22}}(1)+2(a+b){\mathbf {w}_{22}}(2)+M &{}\quad \frac{1}{2}\\ -\frac{b}{(a+b)^2}{\mathbf {w}_{22}}(1)-2(a+b){\mathbf {w}_{22}}(2)-M &{}\quad -\frac{1}{2} \end{pmatrix} {\mathbf {w}_{22}}\\ \mathbf{H}_2^{(2)}&= \begin{pmatrix} 0&{}\quad 0\\ 0&{}\quad 4d^{(2)}k_c^2 \end{pmatrix}{\mathbf {w}_{22}}+\displaystyle \frac{1}{2}\gamma \begin{pmatrix} \frac{2b}{(a+b)^2}+2(a+b)M &{}\quad 2(a+b) \\ -\frac{2b}{(a+b)^2}-2(a+b)M &{}\quad -2(a+b) \end{pmatrix} {\mathbf {w}_{31}},\\ \\ \end{aligned}$$
$$\begin{aligned} \mathbf{H}_2^{(4)}&= \displaystyle \frac{1}{2}\gamma \begin{pmatrix} \frac{2b}{(a+b)^2}+2(a+b)M &{}\quad 2(a+b) \\ -\frac{2b}{(a+b)^2}-2(a+b)M &{}\quad -2(a+b) \end{pmatrix}({\mathbf {w}_{32}}+{\mathbf {w}_{33}})\\&\quad \ +\gamma \begin{pmatrix} \frac{b}{(a+b)^2}{\mathbf {w}_{20}}(1)+2(a+b){\mathbf {w}_{20}}(2)+M &{}\quad \frac{1}{2}\\ -\frac{b}{(a+b)^2}{\mathbf {w}_{20}}(1)-2(a+b){\mathbf {w}_{20}}(2)-M &{}\quad -\frac{1}{2} \end{pmatrix} {\mathbf {w}_{22}}\\&\quad \ +\gamma \begin{pmatrix} \frac{b}{(a+b)^2}{\mathbf {w}_{22}}(1)+2(a+b){\mathbf {w}_{22}}(2)+M &{}\quad \frac{1}{2}\\ -\frac{b}{(a+b)^2}{\mathbf {w}_{22}}(1)-2(a+b){\mathbf {w}_{22}}(2)-M &{}\quad -\frac{1}{2} \end{pmatrix}{\mathbf {w}_{20}},\\ \mathbf{H}_4^{(4)}&= \displaystyle \frac{1}{2}\gamma \begin{pmatrix}\frac{2b}{(a+b)^2}+2(a+b)M &{}\quad 2(a+b) \\ -\frac{2b}{(a+b)^2}-2(a+b)M &{}\quad -2(a+b) \end{pmatrix}{\mathbf {w}_{33}}\\&\quad \ +\displaystyle \frac{1}{2}\gamma \begin{pmatrix} \frac{b}{(a+b)^2}{\mathbf {w}_{22}}(1)+2(a+b){\mathbf {w}_{22}}(2)+M &{}\quad \frac{1}{2}\\ -\frac{b}{(a+b)^2}{\mathbf {w}_{22}}(1)-2(a+b){\mathbf {w}_{22}}(2)-M &{}\quad -\frac{1}{2} \end{pmatrix} {\mathbf {w}_{22}}. \end{aligned}$$

The solvability condition for is automatically satisfied and the solution is:

$$\begin{aligned} \mathbf{w}_4=A^2 \mathbf{w}_{40}+A^4\mathbf{w}_{41}+\left( A^2 \mathbf{w}_{42}+A^4\mathbf{w}_{43}\right) \cos (2k_c x)+A^4 \mathbf{w}_{44}\cos (4 k_c x)\, , \end{aligned}$$
(29)

where the vector \(\mathbf{w}_{4i}\), \(i=1,\ldots ,4\), are the solutions of the following linear systems:

$$\begin{aligned} \varGamma K\mathbf{w}_{40}= & {} 2 \sigma \mathbf{w}_{20}+\mathbf{H}_0^{(2)},\quad \varGamma K\mathbf{w}_{41}= -2 L \mathbf{w}_{20}+ \mathbf{H}_0^{(4)}, \\ L_2 \mathbf{w}_{42}= & {} 2 \sigma \mathbf{w}_{22}+\mathbf{H}_2^{(2)}, \quad L_3 \mathbf{w}_{43}= -2 L \mathbf{w}_{22}+ \mathbf{H}_2^{(4)}, \quad L_4 \mathbf{w}_{44}= \mathbf{H}_4. \end{aligned}$$

At \(O(\varepsilon ^5)\) the resulting equation is \(\mathcal {L}^{d_c} \mathbf{w}_3=\mathbf {P}\), where:

$$\begin{aligned} \mathbf{P}&=\left( \frac{\partial A}{\partial T_4}{\mathbf {r}}+\frac{\partial A}{\partial T_2}{\mathbf {w}_{31}}+3A^2\frac{\partial A}{\partial T_2}{\mathbf {w}_{32}}+A\mathbf{P}_1^{(1)}+A^3\mathbf{P}_1^{(3)}+A^5\mathbf{P}_1^{(5)}\right) \cos (\bar{k}_cx) \end{aligned}$$
(30)
$$\begin{aligned}&\quad \ +\left( 3A^2\frac{\partial A}{\partial T_2}{\mathbf {w}_{33}}+A^3\mathbf{P}_3^{(3)}+A^5\mathbf{P}_3^{(5)}\right) \cos (3\bar{k}_cx)+A^5\mathbf{P}_5^{(5)}\cos (5\bar{k}_cx), \end{aligned}$$
(31)

and:

$$\begin{aligned} \mathbf{P}_1^{(1)}&= \begin{pmatrix} 0 &{}\quad 0 \\ 0 &{}\quad d^{(2)}k_c^2 \end{pmatrix}{\mathbf {w}_{31}}+ \begin{pmatrix} 0\\ d^{(4)}k_c^2 M \end{pmatrix},\\ \mathbf{P}_1^{(3)}&=\begin{pmatrix} 0 &{}\quad 0 \\ 0 &{}\quad d^{(2)}k_c^2 \end{pmatrix} {\mathbf {w}_{32}}- \gamma \begin{pmatrix} \frac{2b}{(a+b)^2}+2(a+b)M &{}\quad 2(a+b) \\ -\frac{2b}{(a+b)^2}-2(a+b)M &{}\quad -2(a+b) \end{pmatrix} \left( {\mathbf {w}_{40}}+\displaystyle \frac{1}{2}{\mathbf {w}_{42}}\right) \\&\quad \ -\gamma \begin{pmatrix} \frac{2b}{(a+b)^2}{\mathbf {w}_{20}}(1)+2(a+b){\mathbf {w}_{20}}(2) &{}\quad 2(a+b){\mathbf {w}_{20}}(1)+\frac{1}{2}\\ -\frac{2b}{(a+b)^2}{\mathbf {w}_{20}}(1)-2(a+b){\mathbf {w}_{20}}(2) &{}\quad -2(a+b){\mathbf {w}_{20}}(1)-\frac{1}{2} \end{pmatrix} {\mathbf {w}_{31}}\\&\quad \ -\displaystyle \frac{1}{2}\gamma \begin{pmatrix} \frac{2b}{(a+b)^2}{\mathbf {w}_{22}}(1)+2(a+b){\mathbf {w}_{22}}(2) &{} 2(a+b){\mathbf {w}_{22}}(1)+\frac{1}{2}\\ -\frac{2b}{(a+b)^2}{\mathbf {w}_{22}}(1)-2(a+b){\mathbf {w}_{22}}(2) &{}\quad -2(a+b){\mathbf {w}_{22}}(1)-\frac{1}{2} \end{pmatrix}{\mathbf {w}_{31}}, \end{aligned}$$
$$\begin{aligned} \mathbf{P}_1^{(5)}&=-\gamma \begin{pmatrix} \frac{2b}{(a+b)^2}+2(a+b)M &{}\quad 2(a+b) \\ -\frac{2b}{(a+b)^2}-2(a+b)M &{}\quad -2(a+b) \end{pmatrix} \left( {\mathbf {w}_{41}}+\displaystyle \frac{1}{2}{\mathbf {w}_{43}}\right) \\&\quad \ -\gamma \begin{pmatrix} \frac{2b}{(a+b)^2}{\mathbf {w}_{20}}(1)+2(a+b){\mathbf {w}_{20}}(2) &{}\quad 2(a+b){\mathbf {w}_{20}}(1)+\frac{1}{2}\\ -\frac{2b}{(a+b)^2}{\mathbf {w}_{20}}(1)-2(a+b){\mathbf {w}_{20}}(2) &{}\quad -2(a+b) {\mathbf {w}_{20}}(1)-\frac{1}{2} \end{pmatrix}{\mathbf {w}_{32}}\\&\quad \ -\displaystyle \gamma \begin{pmatrix} \frac{2b}{(a+b)^2}{\mathbf {w}_{20}}(1)+2(a+b){\mathbf {w}_{20}}(2) &{}\quad 2(a+b){\mathbf {w}_{20}}(1)+\frac{1}{2}\\ -\frac{2b}{(a+b)^2}{\mathbf {w}_{20}}(1)-2(a+b){\mathbf {w}_{20}}(2) &{}\quad -2(a+b){\mathbf {w}_{20}}(1)-\frac{1}{2} \end{pmatrix} ({\mathbf {w}_{32}}+{\mathbf {w}_{33}})\\&\quad \ -\gamma \begin{pmatrix} \left( {\mathbf {w}_{20}}(1)+\frac{1}{2}{\mathbf {w}_{22}}(1)\right) M &{}\quad 2{\mathbf {w}_{20}}(1)+{\mathbf {w}_{22}}(1)\\ -\left( {\mathbf {w}_{20}}(1)+\frac{1}{2}{\mathbf {w}_{22}}(1)\right) M &{}\quad -2{\mathbf {w}_{20}}(1)-{\mathbf {w}_{22}}(1) \end{pmatrix} {\mathbf {w}_{20}}\\&\quad \ -\displaystyle \frac{1}{2}\gamma \begin{pmatrix}\Big ({\mathbf {w}_{20}}(1)+{\mathbf {w}_{22}}(1)\Big )M &{}\quad 2\Big ({\mathbf {w}_{20}}(1)+{\mathbf {w}_{22}}(1)\Big )\\ -\Big ({\mathbf {w}_{20}}(1)+{\mathbf {w}_{22}}(1)\Big )M &{}\quad -2\Big ({\mathbf {w}_{20}}(1)\!+\!{\mathbf {w}_{22}}(1)\Big ) \end{pmatrix}{\mathbf {w}_{22}},\\ \mathbf{P}_3^{(3)}&= \begin{pmatrix} 0 &{}\quad 0 \\ 0 &{}\quad 9d^{(2)}k_c^2 \end{pmatrix} {\mathbf {w}_{33}}-\displaystyle \frac{1}{2}\gamma \begin{pmatrix} \frac{2b}{(a+b)^2}+2(a+b)M &{}\quad 2(a+b) \\ -\frac{2b}{(a+b)^2}-2(a+b)M &{}\quad -2(a+b) \end{pmatrix} {\mathbf {w}_{42}}\\&\quad \ -\displaystyle \gamma \begin{pmatrix} \frac{2b}{(a+b)^2}{\mathbf {w}_{20}}(1)+2(a+b){\mathbf {w}_{20}}(2) &{}\quad 2(a+b){\mathbf {w}_{20}}(1)+\frac{1}{2}\\ -\frac{2b}{(a+b)^2}{\mathbf {w}_{20}}(1)-2(a+b){\mathbf {w}_{20}}(2) &{}\quad -2(a+b){\mathbf {w}_{20}}(1)-\frac{1}{2} \end{pmatrix}{\mathbf {w}_{31}}, \end{aligned}$$
$$\begin{aligned} \mathbf{P}_3^{(5)}&= -\displaystyle \frac{1}{2}\gamma \begin{pmatrix}\frac{2b}{(a+b)^2}+2(a+b)M &{}\quad 2(a+b) \\ -\frac{2b}{(a+b)^2}-2(a+b)M &{}\quad -2(a+b) \end{pmatrix}({\mathbf {w}_{43}}+{\mathbf {w}_{44}})\\&\quad -\gamma \begin{pmatrix} \frac{2b}{(a+b)^2}{\mathbf {w}_{20}}(1)+2(a+b){\mathbf {w}_{20}}(2) &{}\quad 2(a+b){\mathbf {w}_{20}}(1)+\frac{1}{2}\\ -\frac{2b}{(a+b)^2}{\mathbf {w}_{20}}(1)-2(a+b){\mathbf {w}_{20}}(2) &{}\quad -2(a+b){\mathbf {w}_{20}}(1)-\frac{1}{2}\end{pmatrix}{\mathbf {w}_{33}}\\&\quad -\displaystyle \frac{1}{2}\gamma \begin{pmatrix} \frac{2b}{(a+b)^2}{\mathbf {w}_{20}}(1)+2(a+b){\mathbf {w}_{20}}(2) &{}\quad 2(a+b){\mathbf {w}_{20}}(1)+\frac{1}{2}\\ -\frac{2b}{(a+b)^2}{\mathbf {w}_{20}}(1)-2(a+b){\mathbf {w}_{20}}(2) &{}\quad -2(a+b){\mathbf {w}_{20}}(1)-\frac{1}{2}\end{pmatrix}{\mathbf {w}_{32}}\\&\quad -\displaystyle \frac{1}{2}\gamma \begin{pmatrix}M{\mathbf {w}_{20}}(1) &{}\quad 2{\mathbf {w}_{20}}(1)\\ -M{\mathbf {w}_{20}}(1) &{}\quad -2{\mathbf {w}_{20}}(1) \end{pmatrix}{\mathbf {w}_{22}}\\&\quad -\displaystyle \frac{1}{2}\gamma \begin{pmatrix} M{\mathbf {w}_{22}}(1) &{}\quad 2{\mathbf {w}_{22}}(1) \\ -M{\mathbf {w}_{22}}(1) &{}\quad -2{\mathbf {w}_{22}}(1) \end{pmatrix}\left( {\mathbf {w}_{20}}+\displaystyle \frac{1}{2}{\mathbf {w}_{22}}\right) ,\\ \mathbf{P}_5^{(5)}&= -\displaystyle \frac{1}{2}\gamma \begin{pmatrix}\frac{2b}{(a+b)^2}+2(a+b)M &{}\quad 2(a+b) \\ -\frac{2b}{(a+b)^2}-2(a+b)M &{}\quad -2(a+b) \end{pmatrix}{\mathbf {w}_{44}}\\&\quad -\displaystyle \frac{1}{2}\gamma \begin{pmatrix} \frac{2b}{(a+b)^2}{\mathbf {w}_{20}}(1)+2(a+b){\mathbf {w}_{20}}(2) &{}\quad 2(a+b){\mathbf {w}_{20}}(1)+\frac{1}{2}\\ -\frac{2b}{(a+b)^2}{\mathbf {w}_{20}}(1)-2(a+b){\mathbf {w}_{20}}(2) &{}\quad -2(a+b){\mathbf {w}_{20}}(1)-\frac{1}{2} \end{pmatrix}{\mathbf {w}_{33}}\\&\quad -\displaystyle \frac{1}{4}\gamma \begin{pmatrix} M{\mathbf {w}_{22}}(1) &{}\quad 2{\mathbf {w}_{22}}(1) \\ -M{\mathbf {w}_{22}}(1) &{}\quad -2{\mathbf {w}_{22}}(1) \end{pmatrix}{\mathbf {w}_{22}}. \end{aligned}$$

Putting:

$$\begin{aligned}&\displaystyle \tilde{\sigma }=-\frac{\left\langle \mathbf{P}_1^{(1)}, {\varvec{\psi }}\right\rangle }{\left\langle {\mathbf {r}}, {\varvec{\psi }}\right\rangle },\qquad L=\frac{\left\langle {3\sigma {\mathbf {w}_{32}}-L{\mathbf {w}_{31}}+\mathbf P}_1^{(3)}, {\varvec{\psi }}\right\rangle }{\left\langle {\mathbf {r}},{\varvec{\psi }}\right\rangle },\qquad \nonumber \\&\displaystyle R=\frac{\left\langle {3L{\mathbf {w}_{32}}+\mathbf P}_1^{(5)}, {\varvec{\psi }}\right\rangle }{\left\langle {\mathbf {r}}, {\varvec{\psi }}\right\rangle } \end{aligned}$$
(32)

the Fredholm alternative \(\left\langle \mathbf{P}, {\varvec{\psi }}\right\rangle \) for the Eq. (31) leads to:

$$\begin{aligned} \frac{\partial A}{\partial T_4}=\tilde{\sigma }A -\tilde{L}A^3+\tilde{R}A^5. \end{aligned}$$
(33)

Adding up (33) to (24) one gets (26), with:

$$\begin{aligned} \bar{\sigma }=\sigma +\varepsilon ^2\tilde{\sigma }, \qquad \bar{L}=L+\varepsilon ^2\tilde{L}, \qquad \bar{R}=\varepsilon ^2\tilde{R}. \end{aligned}$$
(34)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gambino, G., Lombardo, M.C., Lupo, S. et al. Super-critical and sub-critical bifurcations in a reaction-diffusion Schnakenberg model with linear cross-diffusion. Ricerche mat 65, 449–467 (2016). https://doi.org/10.1007/s11587-016-0267-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-016-0267-y

Keywords

Mathematics Subject Classification