Abstract
Candida auris has emerged as a significant nosocomial fungal pathogen with a high risk of pathogenicity. Since the initial detection of C. auris in 2009, it gained lots of attention with a recent alert by the Centers for Disease Control and Prevention (CDC) due to its high infectivity and drug resistance. Several studies showed the capability of C. auris to secrete lytic enzymes, germinate, and form a biofilm that eventually results in interactions with the host cells, leading to serious infections. Other studies demonstrated a decrease in susceptibility of C. auris strains to available antifungals, which may be caused by mutations within the target genes, or the drug efflux pumps. However, the contribution of C. auris heterogeneity in pathogenicity and drug resistance is not well studied. Here, we shed light on the factors contributing to the development of heterogeneity in C. auris. These include phenotypic changes, biofilm formation, mechanisms of drug resistance, host invasion, mode of transmission, and expression of virulence factors. C. auris exhibits different phenotypes, particularly aggregative, and non-aggregative forms that play an important role in fungal heterogeneity, which significantly affects drug resistance and pathogenicity. Collectively, heterogeneity in C. auris significantly contributes to ineffective treatment, which in turn affects the fungal pathogenicity and drug resistance. Therefore, understanding the underlying reasons for C. auris heterogeneity and applying effective antifungal stewardship could play a major role in controlling this pathogen.
Similar content being viewed by others
Abbreviations
- ABC:
-
ATP-binding cassette
- AMB:
-
Amphotericin B
- C. auris :
-
Candida auris
- CDC:
-
Centers for Disease Control and Prevention
- CNV:
-
Copy number variations
- DE:
-
Differential expression
- FC:
-
Filamentation competent
- GPI:
-
Glycosylphosphatidylinositol
- GWT1:
-
GP1-anchored wall transfer protein 1
- HSP90:
-
Heat shock protein
- H2O2 :
-
Hydrogen peroxide
- L-AmB:
-
Liposomal amphotericin B
- LD:
-
Lanosterol demethylase
- MDR:
-
Multidrug resistant
- MFS:
-
Major facilitator superfamily
- MIC:
-
Minimum inhibitory concentration
- NaOCL:
-
Sodium hypochlorite
- PBMC:
-
Peripheral blood monocellular cells
- PLAs:
-
Phospholipases
- Pz :
-
Precipitated zone values
- RA:
-
Replicative aging
- SAPK:
-
Stress-activated protein kinase
- SAPs:
-
Secreted aspartyl proteases
- SNPs:
-
Single-nucleotide polymorphisms
- WGS:
-
Whole-genome sequences
- YNB:
-
Yeast nitrogen Base
References
Spivak ES, Hanson KE (2018) Candida auris: an Emerging Fungal Pathogen. J Clin Microbiol 56(2):10–1128. https://doi.org/10.1128/jcm.01588-17
Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H (2009) Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol 53(1):41–44. https://doi.org/10.1111/j.1348-0421.2008.00083.x
Borman AM, Szekely A, Johnson EM (2016) Comparative pathogenicity of United Kingdom isolates of the emerging pathogen Candida auris and other key pathogenic Candida species. mSphere 1(4):e00189-00116. https://doi.org/10.1128/mSphere.00189-16
Jacobs SE, Jacobs JL, Dennis EK, Taimur S, Rana M, Patel D, Gitman M, Patel G, Schaefer S, Iyer K, Moon J, Adams V, Lerner P, Walsh TJ, Zhu Y, Anower MR, Vaidya MM, Chaturvedi S, Chaturvedi V (2022) Candida auris pan-drug-resistant to four classes of antifungal agents. Antimicrob Agents Chemother 66(7):e0005322. https://doi.org/10.1128/aac.00053-22
Rossato L, Colombo AL (2018) Candida auris: what have we learned about its mechanisms of pathogenicity? Front Microbiol 9:3081–3081. https://doi.org/10.3389/fmicb.2018.03081
Chaabane F, Graf A, Jequier L, Coste AT (2019) Review on antifungal resistance mechanisms in the emerging pathogen Candida auris. Front Microbiol 10:2788–2788. https://doi.org/10.3389/fmicb.2019.02788
Chow NA, de Groot T, Badali H, Abastabar M, Chiller TM, Meis JF (2019) Potential fifth clade of Candida auris, Iran, 2018. Emerg Infect Dis 25(9):1780–1781. https://doi.org/10.3201/eid2509.190686
Fan S, Li C, Bing J, Huang G, Du H (2020) Discovery of the diploid form of the emerging fungal pathogen Candida auris. ACS Infect Dis 6(10):2641–2646. https://doi.org/10.1021/acsinfecdis.0c00282
Biswas C, Wang Q, van Hal SJ, Eyre DW, Hudson B, Halliday CL, Mazsewska K, Kizny Gordon A, Lee A, Irinyi L (2020) Genetic heterogeneity of Australian Candida auris isolates insights from a nonoutbreak setting using whole-genome sequencing. Open forum infectious diseases. Oxford University Press, US, p ofaa158
Burrack LS, Todd RT, Soisangwan N, Wiederhold NP, Selmecki A (2022) Genomic diversity across Candida auris clinical isolates shapes rapid development of antifungal resistance in vitro and in vivo. mBio 13(4):e0084222. https://doi.org/10.1128/mbio.00842-22
Misas E, Chow NA, Gómez OM, Muñoz JF, McEwen JG, Litvintseva AP, Clay OK (2020) Mitochondrial genome sequences of the emerging fungal pathogen Candida auris. Front Microbiol 11:560332. https://doi.org/10.3389/fmicb.2020.560332
Du H, Bing J, Hu T, Ennis CL, Nobile CJ, Huang G (2020) Candida auris: epidemiology, biology, antifungal resistance, and virulence. PLOS Pathog 16(10):e1008921. https://doi.org/10.1371/journal.ppat.1008921
Lin X, Alspaugh JA, Liu H, Harris S (2014) Fungal morphogenesis. Cold Spring Harb Perspect Med 5(2):a019679. https://doi.org/10.1101/cshperspect.a019679
Fayed B, Jayakumar MN, Soliman SS (2021) Caspofungin-resistance in Candida auris is cell wall-dependent phenotype and potential prevention by zinc oxide nanoparticles. J Med Mycol 59(12):1243–1256
Bravo Ruiz G, Ross ZK, Gow NAR, Lorenz A (2020) Pseudohyphal growth of the emerging pathogen Candida auris is triggered by genotoxic stress through the S phase checkpoint. mSphere 5(2):e00151-00120. https://doi.org/10.1128/mSphere.00151-20
Bravo Ruiz G, Lorenz A (2021) What do we know about the biology of the emerging fungal pathogen of humans Candida auris? Microbiol Res 242:126621. https://doi.org/10.1016/j.micres.2020.126621
Semreen MH, Soliman SSM, Saeed BQ, Alqarihi A, Uppuluri P, Ibrahim AS (2019) Metabolic profiling of Candida auris, a newly-emerging multi-drug resistant Candida species, by GC-MS. Molecules 24(3):399. https://doi.org/10.3390/molecules24030399
Kim SH, Iyer KR, Pardeshi L, Muñoz JF, Robbins N, Cuomo CA, Wong KH, Cowen LE, Kronstad JW (2019) Genetic analysis of Candida auris implicates Hsp90 in morphogenesis and azole tolerance and Cdr1 in azole resistance. mBio 10(1):e02529-02518. https://doi.org/10.1128/mBio.02529-18
Yue H, Bing J, Zheng Q, Zhang Y, Hu T, Du H, Wang H, Huang G (2018) Filamentation in Candida auris, an emerging fungal pathogen of humans: passage through the mammalian body induces a heritable phenotypic switch. Emerg Microbes Infect 7(1):188. https://doi.org/10.1038/s41426-018-0187-x
Szekely A, Borman AM, Johnson EM (2019) Candida auris isolates of the Southern Asian and South African lineages exhibit different phenotypic and antifungal susceptibility profiles in vitro. J Clin Microbiol 57(5):e02055-e2018. https://doi.org/10.1128/jcm.02055-18
Garcia-Bustos V, Ruiz-Saurí A, Ruiz-Gaitán A, Sigona-Giangreco IA, Cabañero-Navalon MD, Sabalza-Baztán O, Salavert-Lletí M, Tormo M, Pemán J (2021) Characterization of the differential pathogenicity of Candida auris in a Galleria mellonella infection model. Microbiol spectr 9(1):e0001321. https://doi.org/10.1128/Spectrum.00013-21
Romera D, Aguilera-Correa JJ, García-Coca M, Mahillo-Fernández I, Viñuela-Sandoval L, García-Rodríguez J, Esteban J (2020) The Galleria mellonella infection model as a system to investigate the virulence of Candida auris strains. Pathog Dis 78(9):ftaa067. https://doi.org/10.1093/femspd/ftaa067
Wurster S, Bandi A, Beyda ND, Albert ND, Raman NM, Raad II, Kontoyiannis DP (2019) Drosophila melanogaster as a model to study virulence and azole treatment of the emerging pathogen Candida auris. J Antimicrob Chemother 74(7):1904–1910. https://doi.org/10.1093/jac/dkz100
Sherry L, Ramage G, Kean R, Borman A, Johnson EM, Richardson MD, Rautemaa-Richardson R (2017) Biofilm-forming capability of highly virulent, multidrug-resistant Candida auris. Emerg Infect Dis 23(2):328–331. https://doi.org/10.3201/eid2302.161320
Brown JL, Delaney C, Short B, Butcher MC, McKloud E, Williams C, Kean R, Ramage G (2020) Candida auris phenotypic heterogeneity determines pathogenicity in vitro. mSphere 5(3):e00371-00320. https://doi.org/10.1128/mSphere.00371-20
Garcia-Bustos V, Pemán J, Ruiz-Gaitán A, Cabañero-Navalon MD, Cabanilles-Boronat A, Fernández-Calduch M, Marcilla-Barreda L, Sigona-Giangreco IA, Salavert M, Tormo-Mas M, Ruiz-Saurí A (2022) Host-pathogen interactions upon Candida auris infection: fungal behaviour and immune response in Galleria mellonella. Emerg Microbes Infect 11(1):136–146. https://doi.org/10.1080/22221751.2021.2017756
Oh BJ, Shin JH, Kim MN, Sung H, Lee K, Joo MY, Shin MG, Suh SP, Ryang DW (2011) Biofilm formation and genotyping of Candida haemulonii, Candida pseudohaemulonii, and a proposed new species (Candida auris) isolates from Korea. Med Mycol 49(1):98–102. https://doi.org/10.3109/13693786.2010.493563
Kean R, Sherry L, Townsend E, McKloud E, Short B, Akinbobola A, Mackay WG, Williams C, Jones BL, Ramage G (2018) Surface disinfection challenges for Candida auris: an in-vitro study. J Hosp Infect 98(4):433–436. https://doi.org/10.1016/j.jhin.2017.11.015
Kean R, Delaney C, Sherry L, Borman A, Johnson EM, Richardson MD, Rautemaa-Richardson R, Williams C, Ramage G, Mitchell AP (2018) Transcriptome assembly and profiling of Candida auris reveals novel insights into biofilm-mediated resistance. mSphere 3(4):e00334-00318. https://doi.org/10.1128/mSphere.00334-18
Wasi M, Khandelwal NK, Moorhouse AJ, Nair R, Vishwakarma P, Bravo Ruiz G, Ross ZK, Lorenz A, Rudramurthy SM, Chakrabarti A, Lynn AM, Mondal AK, Gow NAR, Prasad R (2019) ABC transporter genes show upregulated expression in drug-resistant clinical isolates of Candida auris: a genome-wide characterization of ATP-binding cassette (ABC) transporter genes. Front Microbiol 10:1445. https://doi.org/10.3389/fmicb.2019.01445
Fries BC, Bhattacharya S, Orner E, Bouklas T (2017) Replicative aging in Candida auris has an effect on antifungal resistance. Open Forum Infect Dis 4(Suppl 1):S115–S115. https://doi.org/10.1093/ofid/ofx163.133
Bhattacharya S, Holowka T, Orner EP, Fries BC (2019) Gene duplication associated with increased fluconazole tolerance in Candida auris cells of advanced generational age. Sci Rep 9(1):5052. https://doi.org/10.1038/s41598-019-41513-6
Day AM, McNiff MM, Dantas AdS, Gow NAR, Quinn J, Mitchell AP (2018) Hog1 Regulates stress tolerance and virulence in the emerging fungal pathogen Candida auris. mSphere 3(5):e00506-00518. https://doi.org/10.1128/mSphere.00506-18
Heaney H, Laing J, Paterson L, Walker AW, Gow NAR, Johnson EM, MacCallum DM, Brown AJP (2020) The environmental stress sensitivities of pathogenic Candida species, including Candida auris, and implications for their spread in the hospital setting. Med Mycol 58(6):744–755. https://doi.org/10.1093/mmy/myz127
Muñoz JF, Gade L, Chow NA, Loparev VN, Juieng P, Berkow EL, Farrer RA, Litvintseva AP, Cuomo CA (2018) Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun 9(1):5346. https://doi.org/10.1038/s41467-018-07779-6
Carvajal SK, Alvarado M, Rodríguez YM, Parra-Giraldo CM, Varón C, Morales-López SE, Rodríguez JY, Gómez BL, Escandón P (2021) Pathogenicity assessment of colombian strains of Candida auris in the Galleria mellonella invertebrate model. J Fungi (Basel, Switz) 7(6):401. https://doi.org/10.3390/jof7060401
Navarro-Arias MJ, Hernández-Chávez MJ, García-Carnero LC, Amezcua-Hernández DG, Lozoya-Pérez NE, Estrada-Mata E, Martínez-Duncker I, Franco B, Mora-Montes HM (2019) Differential recognition of Candida tropicalis, Candida guilliermondii, Candida krusei, and Candida auris by human innate immune cells. Infect Drug Resistance 12:783–794. https://doi.org/10.2147/idr.S197531
Larkin E, Hager C, Chandra J, Mukherjee PK, Retuerto M, Salem I, Long L, Isham N, Kovanda L, Borroto-Esoda K, Wring S, Angulo D, Ghannoum M (2017) The emerging pathogen Candida auris: growth phenotype, virulence factors, activity of antifungals, and effect of SCY-078, a novel glucan synthesis inhibitor, on growth morphology and biofilm formation. Antimicrob Agents Chemother 61(5):e02396-e2316. https://doi.org/10.1128/aac.02396-16
Sabino R, Veríssimo C, Pereira ÁA, Antunes F (2020) Candida auris, an agent of hospital-associated outbreaks: which challenging issues do we need to have in mind? Microorganisms 8(2):181. https://doi.org/10.3390/microorganisms8020181
Chemaly RF, Simmons S, Dale C Jr, Ghantoji SS, Rodriguez M, Gubb J, Stachowiak J, Stibich M (2014) The role of the healthcare environment in the spread of multidrug-resistant organisms: update on current best practices for containment. Ther Adv Infect Dis 2(3–4):79–90. https://doi.org/10.1177/2049936114543287
Briano F, Magnasco L, Sepulcri C, Dettori S, Dentone C, Mikulska M, Ball L, Vena A, Robba C, Patroniti N, Brunetti I, Gratarola A, D’Angelo R, Di Pilato V, Coppo E, Marchese A, Pelosi P, Giacobbe DR, Bassetti M (2022) Candida auris candidemia in Critically Ill, colonized patients: cumulative incidence and risk factors. Infect Dis Ther 11(3):1149–1160. https://doi.org/10.1007/s40121-022-00625-9
Rangel-Frausto MS, Houston AK, Bale MJ, Fu C, Wenzel RP (1994) An experimental model for study of Candida survival and transmission in human volunteers. Eur J Clin Microbiol Infect Dis 13(7):590–595. https://doi.org/10.1007/bf01971311
Welsh RM, Bentz ML, Shams A, Houston H, Lyons A, Rose LJ, Litvintseva AP (2017) Survival, persistence, and isolation of the emerging multidrug-resistant pathogenic yeast Candida auris on a plastic health care surface. J Clin Microbiol 55(10):2996–3005. https://doi.org/10.1128/jcm.00921-17
Fasciana T, Cortegiani A, Ippolito M, Giarratano A, Di Quattro O, Lipari D, Graceffa D, Giammanco A (2020) Candida auris: an overview of how to screen, detect, test and control this emerging pathogen. Antibiotics (Basel) 9(11):778. https://doi.org/10.3390/antibiotics9110778
Vallabhaneni S, Zahn M, Epson E, Odonnell K, Horwich-Scholefield S, Brooks R, Vaeth E, Blood T, Shannon DJ, Feaster C, Leung V, Maloney M, Forsberg K, Kallen A, Jackson BR, Walters MS (2019) Early detection of Candida auris is essential to control spread: four effective active surveillance strategies. Open Forum Infect Dis 6(Suppl 2):S846-847. https://doi.org/10.1093/ofid/ofz360.2127
Rossow J, Ostrowsky B, Adams E, Greenko J, McDonald R, Vallabhaneni S, Forsberg K, Perez S, Lucas T, Alroy KA, Jacobs Slifka K, Walters M, Jackson BR, Quinn M, Chaturvedi S, Blog D, Workgroup NYCaI, (2020) Factors associated with Candida auris colonization and transmission in skilled nursing facilities with ventilator units, New York, 2016–2018. Clin Infect Dis 72(11):e753–e760. https://doi.org/10.1093/cid/ciaa1462
Jeffery-Smith A, Taori SK, Schelenz S, Jeffery K, Johnson EM, Borman A, Manuel R, Brown CS (2018) Candida auris: a review of the literature. Clin Microbiol Rev 31(1):e00029-00017. https://doi.org/10.1128/CMR.00029-17
Kanafani ZA, Perfect JR (2008) Resistance to Antifungal Agents: Mechanisms and Clinical Impact. Clin Infect Dis 46(1):120–128. https://doi.org/10.1086/524071
Park JY, Bradley N, Brooks S, Burney S, Wassner C (2019) Management of Patients with Candida auris Fungemia at Community Hospital, Brooklyn, New York, USA, 2016–2018(1). Emerg Infect Dis 25(3):601–602. https://doi.org/10.3201/eid2503.180927
Arendrup MC, Prakash A, Meletiadis J, Sharma C, Chowdhary A (2017) Comparison of EUCAST and CLSI reference microdilution MICs of eight antifungal compounds for Candida auris and associated tentative epidemiological cutoff values. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.00485-17
Pfaller MA, Castanheira M (2015) Nosocomial candidiasis: antifungal stewardship and the importance of rapid diagnosis. Med Mycol 54(1):1–22. https://doi.org/10.1093/mmy/myv076
Dellit TH, Owens RC, McGowan JE, Jr., Gerding DN, Weinstein RA, Burke JP, Huskins WC, Paterson DL, Fishman NO, Carpenter CF, Brennan PJ, Billeter M, Hooton TM, Infectious Diseases Society of A, Society for Healthcare Epidemiology of A (2007) Infectious diseases society of America and the society for healthcare epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis 44(2):159–177. https://doi.org/10.1086/510393
Pappas PG, Kauffman CA, Andes D, Benjamin DK, Jr., Calandra TF, Edwards JE, Jr., Filler SG, Fisher JF, Kullberg BJ, Ostrosky-Zeichner L, Reboli AC, Rex JH, Walsh TJ, Sobel JD, Infectious Diseases Society of A (2009) Clinical practice guidelines for the management of candidiasis: 2009 update by the infectious diseases society of America. Clin Infect Dis 48(5):503–535. https://doi.org/10.1086/596757
Ananda-Rajah MR, Slavin MA, Thursky KT (2012) The case for antifungal stewardship. Curr Opin Infect Dis 25(1):107–115. https://doi.org/10.1097/QCO.0b013e32834e0680
Cornely OA, Bassetti M, Calandra T, Garbino J, Kullberg BJ, Lortholary O, Meersseman W, Akova M, Arendrup MC, Arikan-Akdagli S, Bille J, Castagnola E, Cuenca-Estrella M, Donnelly JP, Groll AH, Herbrecht R, Hope WW, Jensen HE, Lass-Florl C, Petrikkos G, Richardson MD, Roilides E, Verweij PE, Viscoli C, Ullmann AJ, Group EFIS (2012) ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin Microbiol Infect 18(Suppl 7):19–37. https://doi.org/10.1111/1469-0691.12039
Ullmann AJ, Akova M, Herbrecht R, Viscoli C, Arendrup MC, Arikan-Akdagli S, Bassetti M, Bille J, Calandra T, Castagnola E, Cornely OA, Donnelly JP, Garbino J, Groll AH, Hope WW, Jensen HE, Kullberg BJ, Lass-Florl C, Lortholary O, Meersseman W, Petrikkos G, Richardson MD, Roilides E, Verweij PE, Cuenca-Estrella M, Group EFIS (2012) ESCMID* guideline for the diagnosis and management of Candida diseases 2012: adults with haematological malignancies and after haematopoietic stem cell transplantation (HCT). Clin Microbiol Infect 18(Suppl 7):53–67. https://doi.org/10.1111/1469-0691.12041
Reed EE, West JE, Keating EA, Pancholi P, Balada-Llasat JM, Mangino JE, Bauer KA, Goff DA (2014) Improving the management of candidemia through antimicrobial stewardship interventions. Diagn Micr Infec Dis 78(2):157–161. https://doi.org/10.1016/j.diagmicrobio.2013.11.012
Antworth A, Collins CD, Kunapuli A, Klein K, Carver P, Gandhi T, Washer L, Nagel JL (2013) Impact of an antimicrobial stewardship program comprehensive care bundle on management of candidemia. Pharmacotherapy 33(2):137–143. https://doi.org/10.1002/phar.1186
Mondain V, Lieutier F, Hasseine L, Gari-Toussaint M, Poiree M, Lions C, Pulcini C (2013) A 6-year antifungal stewardship programme in a teaching hospital. Infection 41(3):621–628. https://doi.org/10.1007/s15010-013-0431-1
Quindós G, Miranda-Cadena K, San-Millán R, Borroto-Esoda K, Cantón E, Linares-Sicilia MJ, Hamprecht A, Montesinos I, Tortorano AM, Prigitano A, Vidal-García M, Marcos-Arias C, Guridi A, Sanchez-Reus F, Machuca-Bárcena J, Rodríguez-Iglesias MA, Martín-Mazuelos E, Castro-Méndez C, López-Soria L, Ruiz-Gaitán A, Fernandez-Rivero M, Lorenzo D, Capilla J, Rezusta A, Pemán J, Guarro J, Pereira J, Pais C, Romeo O, Ezpeleta G, Jauregizar N, Angulo D, Eraso E (2022) In vitro antifungal activity of ibrexafungerp (SCY-078) against contemporary blood isolates from medically relevant species of Candida: a European study. Front Cell Infect Microbiol 12:906563. https://doi.org/10.3389/fcimb.2022.906563
Bandara N, Samaranayake L (2022) Emerging and future strategies in the management of recalcitrant Candida auris. Med Mycol 60(4):myac008. https://doi.org/10.1093/mmy/myac008
Kapoor M, Moloney M, Soltow QA, Pillar CM, Shaw KJ (2019) Evaluation of resistance development to the Gwt1 inhibitor manogepix (APX001A) in Candida species. Antimicrob Agents Chemother 64(1):e01387-01319. https://doi.org/10.1128/AAC.01387-19
Bhattacharya S, Bouklas T, Fries BC (2021) Replicative aging in pathogenic fungi. J Fungi 7(1):6
Funding
The authors acknowledge the generous support from CSRG-2021/01 to SSMS and AS and partial funding from the University of Sharjah (Grant# 2101090286).
Author information
Authors and Affiliations
Contributions
MQ, BA, and FB wrote the first draft. BF, IL, and RA wrote the second draft and added more data. AS and MH revised the review and helped on the design of the review. SSMS generated the idea, designed the review, and wrote the final version. All authors agreed on publishing the review.
Corresponding author
Ethics declarations
Conflict of interest
All authors confirm that there is no conflict of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Fayed, B., Lazreg, I.K., AlHumaidi, R.B. et al. Intra-clade Heterogeneity in Candida auris: Risk of Management. Curr Microbiol 80, 295 (2023). https://doi.org/10.1007/s00284-023-03416-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00284-023-03416-8