[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Intra-clade Heterogeneity in Candida auris: Risk of Management

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Candida auris has emerged as a significant nosocomial fungal pathogen with a high risk of pathogenicity. Since the initial detection of C. auris in 2009, it gained lots of attention with a recent alert by the Centers for Disease Control and Prevention (CDC) due to its high infectivity and drug resistance. Several studies showed the capability of C. auris to secrete lytic enzymes, germinate, and form a biofilm that eventually results in interactions with the host cells, leading to serious infections. Other studies demonstrated a decrease in susceptibility of C. auris strains to available antifungals, which may be caused by mutations within the target genes, or the drug efflux pumps. However, the contribution of C. auris heterogeneity in pathogenicity and drug resistance is not well studied. Here, we shed light on the factors contributing to the development of heterogeneity in C. auris. These include phenotypic changes, biofilm formation, mechanisms of drug resistance, host invasion, mode of transmission, and expression of virulence factors. C. auris exhibits different phenotypes, particularly aggregative, and non-aggregative forms that play an important role in fungal heterogeneity, which significantly affects drug resistance and pathogenicity. Collectively, heterogeneity in C. auris significantly contributes to ineffective treatment, which in turn affects the fungal pathogenicity and drug resistance. Therefore, understanding the underlying reasons for C. auris heterogeneity and applying effective antifungal stewardship could play a major role in controlling this pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

AMB:

Amphotericin B

C. auris :

Candida auris

CDC:

Centers for Disease Control and Prevention

CNV:

Copy number variations

DE:

Differential expression

FC:

Filamentation competent

GPI:

Glycosylphosphatidylinositol

GWT1:

GP1-anchored wall transfer protein 1

HSP90:

Heat shock protein

H2O2 :

Hydrogen peroxide

L-AmB:

Liposomal amphotericin B

LD:

Lanosterol demethylase

MDR:

Multidrug resistant

MFS:

Major facilitator superfamily

MIC:

Minimum inhibitory concentration

NaOCL:

Sodium hypochlorite

PBMC:

Peripheral blood monocellular cells

PLAs:

Phospholipases

Pz :

Precipitated zone values

RA:

Replicative aging

SAPK:

Stress-activated protein kinase

SAPs:

Secreted aspartyl proteases

SNPs:

Single-nucleotide polymorphisms

WGS:

Whole-genome sequences

YNB:

Yeast nitrogen Base

References

  1. Spivak ES, Hanson KE (2018) Candida auris: an Emerging Fungal Pathogen. J Clin Microbiol 56(2):10–1128. https://doi.org/10.1128/jcm.01588-17

    Article  CAS  Google Scholar 

  2. Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H (2009) Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol 53(1):41–44. https://doi.org/10.1111/j.1348-0421.2008.00083.x

    Article  CAS  PubMed  Google Scholar 

  3. Borman AM, Szekely A, Johnson EM (2016) Comparative pathogenicity of United Kingdom isolates of the emerging pathogen Candida auris and other key pathogenic Candida species. mSphere 1(4):e00189-00116. https://doi.org/10.1128/mSphere.00189-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jacobs SE, Jacobs JL, Dennis EK, Taimur S, Rana M, Patel D, Gitman M, Patel G, Schaefer S, Iyer K, Moon J, Adams V, Lerner P, Walsh TJ, Zhu Y, Anower MR, Vaidya MM, Chaturvedi S, Chaturvedi V (2022) Candida auris pan-drug-resistant to four classes of antifungal agents. Antimicrob Agents Chemother 66(7):e0005322. https://doi.org/10.1128/aac.00053-22

    Article  CAS  PubMed  Google Scholar 

  5. Rossato L, Colombo AL (2018) Candida auris: what have we learned about its mechanisms of pathogenicity? Front Microbiol 9:3081–3081. https://doi.org/10.3389/fmicb.2018.03081

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chaabane F, Graf A, Jequier L, Coste AT (2019) Review on antifungal resistance mechanisms in the emerging pathogen Candida auris. Front Microbiol 10:2788–2788. https://doi.org/10.3389/fmicb.2019.02788

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chow NA, de Groot T, Badali H, Abastabar M, Chiller TM, Meis JF (2019) Potential fifth clade of Candida auris, Iran, 2018. Emerg Infect Dis 25(9):1780–1781. https://doi.org/10.3201/eid2509.190686

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fan S, Li C, Bing J, Huang G, Du H (2020) Discovery of the diploid form of the emerging fungal pathogen Candida auris. ACS Infect Dis 6(10):2641–2646. https://doi.org/10.1021/acsinfecdis.0c00282

    Article  CAS  PubMed  Google Scholar 

  9. Biswas C, Wang Q, van Hal SJ, Eyre DW, Hudson B, Halliday CL, Mazsewska K, Kizny Gordon A, Lee A, Irinyi L (2020) Genetic heterogeneity of Australian Candida auris isolates insights from a nonoutbreak setting using whole-genome sequencing. Open forum infectious diseases. Oxford University Press, US, p ofaa158

    Google Scholar 

  10. Burrack LS, Todd RT, Soisangwan N, Wiederhold NP, Selmecki A (2022) Genomic diversity across Candida auris clinical isolates shapes rapid development of antifungal resistance in vitro and in vivo. mBio 13(4):e0084222. https://doi.org/10.1128/mbio.00842-22

    Article  CAS  PubMed  Google Scholar 

  11. Misas E, Chow NA, Gómez OM, Muñoz JF, McEwen JG, Litvintseva AP, Clay OK (2020) Mitochondrial genome sequences of the emerging fungal pathogen Candida auris. Front Microbiol 11:560332. https://doi.org/10.3389/fmicb.2020.560332

    Article  PubMed  PubMed Central  Google Scholar 

  12. Du H, Bing J, Hu T, Ennis CL, Nobile CJ, Huang G (2020) Candida auris: epidemiology, biology, antifungal resistance, and virulence. PLOS Pathog 16(10):e1008921. https://doi.org/10.1371/journal.ppat.1008921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin X, Alspaugh JA, Liu H, Harris S (2014) Fungal morphogenesis. Cold Spring Harb Perspect Med 5(2):a019679. https://doi.org/10.1101/cshperspect.a019679

    Article  CAS  PubMed  Google Scholar 

  14. Fayed B, Jayakumar MN, Soliman SS (2021) Caspofungin-resistance in Candida auris is cell wall-dependent phenotype and potential prevention by zinc oxide nanoparticles. J Med Mycol 59(12):1243–1256

    Article  CAS  Google Scholar 

  15. Bravo Ruiz G, Ross ZK, Gow NAR, Lorenz A (2020) Pseudohyphal growth of the emerging pathogen Candida auris is triggered by genotoxic stress through the S phase checkpoint. mSphere 5(2):e00151-00120. https://doi.org/10.1128/mSphere.00151-20

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bravo Ruiz G, Lorenz A (2021) What do we know about the biology of the emerging fungal pathogen of humans Candida auris? Microbiol Res 242:126621. https://doi.org/10.1016/j.micres.2020.126621

    Article  CAS  PubMed  Google Scholar 

  17. Semreen MH, Soliman SSM, Saeed BQ, Alqarihi A, Uppuluri P, Ibrahim AS (2019) Metabolic profiling of Candida auris, a newly-emerging multi-drug resistant Candida species, by GC-MS. Molecules 24(3):399. https://doi.org/10.3390/molecules24030399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim SH, Iyer KR, Pardeshi L, Muñoz JF, Robbins N, Cuomo CA, Wong KH, Cowen LE, Kronstad JW (2019) Genetic analysis of Candida auris implicates Hsp90 in morphogenesis and azole tolerance and Cdr1 in azole resistance. mBio 10(1):e02529-02518. https://doi.org/10.1128/mBio.02529-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yue H, Bing J, Zheng Q, Zhang Y, Hu T, Du H, Wang H, Huang G (2018) Filamentation in Candida auris, an emerging fungal pathogen of humans: passage through the mammalian body induces a heritable phenotypic switch. Emerg Microbes Infect 7(1):188. https://doi.org/10.1038/s41426-018-0187-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Szekely A, Borman AM, Johnson EM (2019) Candida auris isolates of the Southern Asian and South African lineages exhibit different phenotypic and antifungal susceptibility profiles in vitro. J Clin Microbiol 57(5):e02055-e2018. https://doi.org/10.1128/jcm.02055-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garcia-Bustos V, Ruiz-Saurí A, Ruiz-Gaitán A, Sigona-Giangreco IA, Cabañero-Navalon MD, Sabalza-Baztán O, Salavert-Lletí M, Tormo M, Pemán J (2021) Characterization of the differential pathogenicity of Candida auris in a Galleria mellonella infection model. Microbiol spectr 9(1):e0001321. https://doi.org/10.1128/Spectrum.00013-21

    Article  PubMed  Google Scholar 

  22. Romera D, Aguilera-Correa JJ, García-Coca M, Mahillo-Fernández I, Viñuela-Sandoval L, García-Rodríguez J, Esteban J (2020) The Galleria mellonella infection model as a system to investigate the virulence of Candida auris strains. Pathog Dis 78(9):ftaa067. https://doi.org/10.1093/femspd/ftaa067

    Article  CAS  PubMed  Google Scholar 

  23. Wurster S, Bandi A, Beyda ND, Albert ND, Raman NM, Raad II, Kontoyiannis DP (2019) Drosophila melanogaster as a model to study virulence and azole treatment of the emerging pathogen Candida auris. J Antimicrob Chemother 74(7):1904–1910. https://doi.org/10.1093/jac/dkz100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sherry L, Ramage G, Kean R, Borman A, Johnson EM, Richardson MD, Rautemaa-Richardson R (2017) Biofilm-forming capability of highly virulent, multidrug-resistant Candida auris. Emerg Infect Dis 23(2):328–331. https://doi.org/10.3201/eid2302.161320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brown JL, Delaney C, Short B, Butcher MC, McKloud E, Williams C, Kean R, Ramage G (2020) Candida auris phenotypic heterogeneity determines pathogenicity in vitro. mSphere 5(3):e00371-00320. https://doi.org/10.1128/mSphere.00371-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garcia-Bustos V, Pemán J, Ruiz-Gaitán A, Cabañero-Navalon MD, Cabanilles-Boronat A, Fernández-Calduch M, Marcilla-Barreda L, Sigona-Giangreco IA, Salavert M, Tormo-Mas M, Ruiz-Saurí A (2022) Host-pathogen interactions upon Candida auris infection: fungal behaviour and immune response in Galleria mellonella. Emerg Microbes Infect 11(1):136–146. https://doi.org/10.1080/22221751.2021.2017756

    Article  CAS  PubMed  Google Scholar 

  27. Oh BJ, Shin JH, Kim MN, Sung H, Lee K, Joo MY, Shin MG, Suh SP, Ryang DW (2011) Biofilm formation and genotyping of Candida haemulonii, Candida pseudohaemulonii, and a proposed new species (Candida auris) isolates from Korea. Med Mycol 49(1):98–102. https://doi.org/10.3109/13693786.2010.493563

    Article  PubMed  Google Scholar 

  28. Kean R, Sherry L, Townsend E, McKloud E, Short B, Akinbobola A, Mackay WG, Williams C, Jones BL, Ramage G (2018) Surface disinfection challenges for Candida auris: an in-vitro study. J Hosp Infect 98(4):433–436. https://doi.org/10.1016/j.jhin.2017.11.015

    Article  CAS  PubMed  Google Scholar 

  29. Kean R, Delaney C, Sherry L, Borman A, Johnson EM, Richardson MD, Rautemaa-Richardson R, Williams C, Ramage G, Mitchell AP (2018) Transcriptome assembly and profiling of Candida auris reveals novel insights into biofilm-mediated resistance. mSphere 3(4):e00334-00318. https://doi.org/10.1128/mSphere.00334-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wasi M, Khandelwal NK, Moorhouse AJ, Nair R, Vishwakarma P, Bravo Ruiz G, Ross ZK, Lorenz A, Rudramurthy SM, Chakrabarti A, Lynn AM, Mondal AK, Gow NAR, Prasad R (2019) ABC transporter genes show upregulated expression in drug-resistant clinical isolates of Candida auris: a genome-wide characterization of ATP-binding cassette (ABC) transporter genes. Front Microbiol 10:1445. https://doi.org/10.3389/fmicb.2019.01445

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fries BC, Bhattacharya S, Orner E, Bouklas T (2017) Replicative aging in Candida auris has an effect on antifungal resistance. Open Forum Infect Dis 4(Suppl 1):S115–S115. https://doi.org/10.1093/ofid/ofx163.133

    Article  PubMed Central  Google Scholar 

  32. Bhattacharya S, Holowka T, Orner EP, Fries BC (2019) Gene duplication associated with increased fluconazole tolerance in Candida auris cells of advanced generational age. Sci Rep 9(1):5052. https://doi.org/10.1038/s41598-019-41513-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Day AM, McNiff MM, Dantas AdS, Gow NAR, Quinn J, Mitchell AP (2018) Hog1 Regulates stress tolerance and virulence in the emerging fungal pathogen Candida auris. mSphere 3(5):e00506-00518. https://doi.org/10.1128/mSphere.00506-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heaney H, Laing J, Paterson L, Walker AW, Gow NAR, Johnson EM, MacCallum DM, Brown AJP (2020) The environmental stress sensitivities of pathogenic Candida species, including Candida auris, and implications for their spread in the hospital setting. Med Mycol 58(6):744–755. https://doi.org/10.1093/mmy/myz127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Muñoz JF, Gade L, Chow NA, Loparev VN, Juieng P, Berkow EL, Farrer RA, Litvintseva AP, Cuomo CA (2018) Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun 9(1):5346. https://doi.org/10.1038/s41467-018-07779-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carvajal SK, Alvarado M, Rodríguez YM, Parra-Giraldo CM, Varón C, Morales-López SE, Rodríguez JY, Gómez BL, Escandón P (2021) Pathogenicity assessment of colombian strains of Candida auris in the Galleria mellonella invertebrate model. J Fungi (Basel, Switz) 7(6):401. https://doi.org/10.3390/jof7060401

    Article  CAS  Google Scholar 

  37. Navarro-Arias MJ, Hernández-Chávez MJ, García-Carnero LC, Amezcua-Hernández DG, Lozoya-Pérez NE, Estrada-Mata E, Martínez-Duncker I, Franco B, Mora-Montes HM (2019) Differential recognition of Candida tropicalis, Candida guilliermondii, Candida krusei, and Candida auris by human innate immune cells. Infect Drug Resistance 12:783–794. https://doi.org/10.2147/idr.S197531

    Article  CAS  Google Scholar 

  38. Larkin E, Hager C, Chandra J, Mukherjee PK, Retuerto M, Salem I, Long L, Isham N, Kovanda L, Borroto-Esoda K, Wring S, Angulo D, Ghannoum M (2017) The emerging pathogen Candida auris: growth phenotype, virulence factors, activity of antifungals, and effect of SCY-078, a novel glucan synthesis inhibitor, on growth morphology and biofilm formation. Antimicrob Agents Chemother 61(5):e02396-e2316. https://doi.org/10.1128/aac.02396-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sabino R, Veríssimo C, Pereira ÁA, Antunes F (2020) Candida auris, an agent of hospital-associated outbreaks: which challenging issues do we need to have in mind? Microorganisms 8(2):181. https://doi.org/10.3390/microorganisms8020181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chemaly RF, Simmons S, Dale C Jr, Ghantoji SS, Rodriguez M, Gubb J, Stachowiak J, Stibich M (2014) The role of the healthcare environment in the spread of multidrug-resistant organisms: update on current best practices for containment. Ther Adv Infect Dis 2(3–4):79–90. https://doi.org/10.1177/2049936114543287

    Article  PubMed  PubMed Central  Google Scholar 

  41. Briano F, Magnasco L, Sepulcri C, Dettori S, Dentone C, Mikulska M, Ball L, Vena A, Robba C, Patroniti N, Brunetti I, Gratarola A, D’Angelo R, Di Pilato V, Coppo E, Marchese A, Pelosi P, Giacobbe DR, Bassetti M (2022) Candida auris candidemia in Critically Ill, colonized patients: cumulative incidence and risk factors. Infect Dis Ther 11(3):1149–1160. https://doi.org/10.1007/s40121-022-00625-9

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rangel-Frausto MS, Houston AK, Bale MJ, Fu C, Wenzel RP (1994) An experimental model for study of Candida survival and transmission in human volunteers. Eur J Clin Microbiol Infect Dis 13(7):590–595. https://doi.org/10.1007/bf01971311

    Article  CAS  PubMed  Google Scholar 

  43. Welsh RM, Bentz ML, Shams A, Houston H, Lyons A, Rose LJ, Litvintseva AP (2017) Survival, persistence, and isolation of the emerging multidrug-resistant pathogenic yeast Candida auris on a plastic health care surface. J Clin Microbiol 55(10):2996–3005. https://doi.org/10.1128/jcm.00921-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fasciana T, Cortegiani A, Ippolito M, Giarratano A, Di Quattro O, Lipari D, Graceffa D, Giammanco A (2020) Candida auris: an overview of how to screen, detect, test and control this emerging pathogen. Antibiotics (Basel) 9(11):778. https://doi.org/10.3390/antibiotics9110778

    Article  CAS  PubMed  Google Scholar 

  45. Vallabhaneni S, Zahn M, Epson E, Odonnell K, Horwich-Scholefield S, Brooks R, Vaeth E, Blood T, Shannon DJ, Feaster C, Leung V, Maloney M, Forsberg K, Kallen A, Jackson BR, Walters MS (2019) Early detection of Candida auris is essential to control spread: four effective active surveillance strategies. Open Forum Infect Dis 6(Suppl 2):S846-847. https://doi.org/10.1093/ofid/ofz360.2127

    Article  PubMed Central  Google Scholar 

  46. Rossow J, Ostrowsky B, Adams E, Greenko J, McDonald R, Vallabhaneni S, Forsberg K, Perez S, Lucas T, Alroy KA, Jacobs Slifka K, Walters M, Jackson BR, Quinn M, Chaturvedi S, Blog D, Workgroup NYCaI, (2020) Factors associated with Candida auris colonization and transmission in skilled nursing facilities with ventilator units, New York, 2016–2018. Clin Infect Dis 72(11):e753–e760. https://doi.org/10.1093/cid/ciaa1462

    Article  PubMed Central  Google Scholar 

  47. Jeffery-Smith A, Taori SK, Schelenz S, Jeffery K, Johnson EM, Borman A, Manuel R, Brown CS (2018) Candida auris: a review of the literature. Clin Microbiol Rev 31(1):e00029-00017. https://doi.org/10.1128/CMR.00029-17

    Article  PubMed  Google Scholar 

  48. Kanafani ZA, Perfect JR (2008) Resistance to Antifungal Agents: Mechanisms and Clinical Impact. Clin Infect Dis 46(1):120–128. https://doi.org/10.1086/524071

    Article  PubMed  Google Scholar 

  49. Park JY, Bradley N, Brooks S, Burney S, Wassner C (2019) Management of Patients with Candida auris Fungemia at Community Hospital, Brooklyn, New York, USA, 2016–2018(1). Emerg Infect Dis 25(3):601–602. https://doi.org/10.3201/eid2503.180927

    Article  PubMed  PubMed Central  Google Scholar 

  50. Arendrup MC, Prakash A, Meletiadis J, Sharma C, Chowdhary A (2017) Comparison of EUCAST and CLSI reference microdilution MICs of eight antifungal compounds for Candida auris and associated tentative epidemiological cutoff values. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.00485-17

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pfaller MA, Castanheira M (2015) Nosocomial candidiasis: antifungal stewardship and the importance of rapid diagnosis. Med Mycol 54(1):1–22. https://doi.org/10.1093/mmy/myv076

    Article  PubMed  Google Scholar 

  52. Dellit TH, Owens RC, McGowan JE, Jr., Gerding DN, Weinstein RA, Burke JP, Huskins WC, Paterson DL, Fishman NO, Carpenter CF, Brennan PJ, Billeter M, Hooton TM, Infectious Diseases Society of A, Society for Healthcare Epidemiology of A (2007) Infectious diseases society of America and the society for healthcare epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis 44(2):159–177. https://doi.org/10.1086/510393

    Article  Google Scholar 

  53. Pappas PG, Kauffman CA, Andes D, Benjamin DK, Jr., Calandra TF, Edwards JE, Jr., Filler SG, Fisher JF, Kullberg BJ, Ostrosky-Zeichner L, Reboli AC, Rex JH, Walsh TJ, Sobel JD, Infectious Diseases Society of A (2009) Clinical practice guidelines for the management of candidiasis: 2009 update by the infectious diseases society of America. Clin Infect Dis 48(5):503–535. https://doi.org/10.1086/596757

    Article  CAS  Google Scholar 

  54. Ananda-Rajah MR, Slavin MA, Thursky KT (2012) The case for antifungal stewardship. Curr Opin Infect Dis 25(1):107–115. https://doi.org/10.1097/QCO.0b013e32834e0680

    Article  PubMed  Google Scholar 

  55. Cornely OA, Bassetti M, Calandra T, Garbino J, Kullberg BJ, Lortholary O, Meersseman W, Akova M, Arendrup MC, Arikan-Akdagli S, Bille J, Castagnola E, Cuenca-Estrella M, Donnelly JP, Groll AH, Herbrecht R, Hope WW, Jensen HE, Lass-Florl C, Petrikkos G, Richardson MD, Roilides E, Verweij PE, Viscoli C, Ullmann AJ, Group EFIS (2012) ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin Microbiol Infect 18(Suppl 7):19–37. https://doi.org/10.1111/1469-0691.12039

    Article  CAS  Google Scholar 

  56. Ullmann AJ, Akova M, Herbrecht R, Viscoli C, Arendrup MC, Arikan-Akdagli S, Bassetti M, Bille J, Calandra T, Castagnola E, Cornely OA, Donnelly JP, Garbino J, Groll AH, Hope WW, Jensen HE, Kullberg BJ, Lass-Florl C, Lortholary O, Meersseman W, Petrikkos G, Richardson MD, Roilides E, Verweij PE, Cuenca-Estrella M, Group EFIS (2012) ESCMID* guideline for the diagnosis and management of Candida diseases 2012: adults with haematological malignancies and after haematopoietic stem cell transplantation (HCT). Clin Microbiol Infect 18(Suppl 7):53–67. https://doi.org/10.1111/1469-0691.12041

    Article  CAS  Google Scholar 

  57. Reed EE, West JE, Keating EA, Pancholi P, Balada-Llasat JM, Mangino JE, Bauer KA, Goff DA (2014) Improving the management of candidemia through antimicrobial stewardship interventions. Diagn Micr Infec Dis 78(2):157–161. https://doi.org/10.1016/j.diagmicrobio.2013.11.012

    Article  Google Scholar 

  58. Antworth A, Collins CD, Kunapuli A, Klein K, Carver P, Gandhi T, Washer L, Nagel JL (2013) Impact of an antimicrobial stewardship program comprehensive care bundle on management of candidemia. Pharmacotherapy 33(2):137–143. https://doi.org/10.1002/phar.1186

    Article  PubMed  Google Scholar 

  59. Mondain V, Lieutier F, Hasseine L, Gari-Toussaint M, Poiree M, Lions C, Pulcini C (2013) A 6-year antifungal stewardship programme in a teaching hospital. Infection 41(3):621–628. https://doi.org/10.1007/s15010-013-0431-1

    Article  CAS  PubMed  Google Scholar 

  60. Quindós G, Miranda-Cadena K, San-Millán R, Borroto-Esoda K, Cantón E, Linares-Sicilia MJ, Hamprecht A, Montesinos I, Tortorano AM, Prigitano A, Vidal-García M, Marcos-Arias C, Guridi A, Sanchez-Reus F, Machuca-Bárcena J, Rodríguez-Iglesias MA, Martín-Mazuelos E, Castro-Méndez C, López-Soria L, Ruiz-Gaitán A, Fernandez-Rivero M, Lorenzo D, Capilla J, Rezusta A, Pemán J, Guarro J, Pereira J, Pais C, Romeo O, Ezpeleta G, Jauregizar N, Angulo D, Eraso E (2022) In vitro antifungal activity of ibrexafungerp (SCY-078) against contemporary blood isolates from medically relevant species of Candida: a European study. Front Cell Infect Microbiol 12:906563. https://doi.org/10.3389/fcimb.2022.906563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bandara N, Samaranayake L (2022) Emerging and future strategies in the management of recalcitrant Candida auris. Med Mycol 60(4):myac008. https://doi.org/10.1093/mmy/myac008

    Article  CAS  PubMed  Google Scholar 

  62. Kapoor M, Moloney M, Soltow QA, Pillar CM, Shaw KJ (2019) Evaluation of resistance development to the Gwt1 inhibitor manogepix (APX001A) in Candida species. Antimicrob Agents Chemother 64(1):e01387-01319. https://doi.org/10.1128/AAC.01387-19

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bhattacharya S, Bouklas T, Fries BC (2021) Replicative aging in pathogenic fungi. J Fungi 7(1):6

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the generous support from CSRG-2021/01 to SSMS and AS and partial funding from the University of Sharjah (Grant# 2101090286).

Author information

Authors and Affiliations

Authors

Contributions

MQ, BA, and FB wrote the first draft. BF, IL, and RA wrote the second draft and added more data. AS and MH revised the review and helped on the design of the review. SSMS generated the idea, designed the review, and wrote the final version. All authors agreed on publishing the review.

Corresponding author

Correspondence to Sameh S. M. Soliman.

Ethics declarations

Conflict of interest

All authors confirm that there is no conflict of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayed, B., Lazreg, I.K., AlHumaidi, R.B. et al. Intra-clade Heterogeneity in Candida auris: Risk of Management. Curr Microbiol 80, 295 (2023). https://doi.org/10.1007/s00284-023-03416-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03416-8

Navigation