Pathogenicity Assessment of Colombian Strains of Candida auris in the Galleria mellonella Invertebrate Model
<p>Survival curves of <span class="html-italic">G. mellonella</span> infected with 1 × 10<sup>6</sup> cells/larvae of <span class="html-italic">C. auris</span> and <span class="html-italic">C. albicans</span> (<b>A</b>) Kaplan–Meier plots of <span class="html-italic">G. mellonella</span> survival after injection of <span class="html-italic">C. auris</span> from invasive (<span class="html-italic">Inv.</span>) and colonization (<span class="html-italic">Col</span>.) processes compared to <span class="html-italic">C. albicans</span>, which is characterized as high virulence. (<b>B</b>) Number of isolates that caused 100% mortality of the larvae in the different days 1–15 of post-infection follow-up compared with strain SC5314.</p> "> Figure 2
<p>Virulence of aggregate-forming and non-aggregate strains of <span class="html-italic">C. auris</span> compared to <span class="html-italic">C. albicans</span> SC5314 in <span class="html-italic">G. mellonella</span> larvae at 37 °C. Kaplan–Meier plots of <span class="html-italic">G. mellonella</span> survival after injection with 10<sup>6</sup> cells/larva of <span class="html-italic">Candida albicans</span> (red line), non-aggregating <span class="html-italic">C. auris</span> strains (blue and black line), and aggregate-forming <span class="html-italic">C. auris</span> strains (pink and green line) are shown. Experiments were performed in triplicate with 10 larvae per strain in each experiment. No larval killing was observed in control larvae injected with an equivalent volume of PBS (black arrowed lines).</p> "> Figure 3
<p>Comparison of the virulence of <span class="html-italic">C. auris</span> isolates from the present study versus the enzymatic activity.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Isolate and Preparation of Inoculum
2.2. Infection of Galleria Mellonella
2.3. Enzymatic Activity
2.4. Mortality Study and Statistical Analysis
3. Results
3.1. Virulence of C. auris Isolates from Invasive and Colonization Processes
3.2. Virulence Comparison of Aggregated and Non-Aggregated Cells of C. auris
3.3. More Than Half of the Isolates with High Pathogenicity Were Obtained from Cartagena
3.4. Enzymatic Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cortés, J.A.; Ruiz, J.F.; Melgarejo-Moreno, L.N.; Lemos, E.V. Candidemia en Colombia. Biomédica 2020, 40, 1–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Prim. 2018, 4, 18026. [Google Scholar] [CrossRef]
- Lee, W.G.; Shin, J.H.; Uh, Y.; Kang, M.G.; Kim, S.H.; Park, K.H. First Three Reported Cases of Nosocomial Fungemia Caused by Candida auris. J. Clin. Microbiol. 2011, 49, 3139–3142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satoh, K.; Makimura, K.; Hasumi, Y.; Nishiyama, Y.; Uchida, K.; Yamaguchi, H. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol. Immunol. 2008, 53, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Gaytán, J.J.; Montoya, A.M.; Martínez-Resendez, M.F.; Guajardo-Lara, C.E.; de Treviño-Rangel, R.; Salazar-Cavazos, L. First case of Candida auris isolated from the bloodstream of a Mexican patient with serious gastrointestinal complications from severe endometriosis. Infection 2020, 4–6. [Google Scholar] [CrossRef]
- Escandón, P.; Cáceres, D.H.; Espinosa-Bode, A.; Rivera, S.; Armstrong, P.; Vallabhaneni, S. Notes from the Field: Surveillance for Candida auris—Colombia, September 2016–May 2017. MMWR Morb. Mortal. Wkly Rep. 2018, 67, 459–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kean, R.; Brown, J.; Gulmez, D.; Ware, A.; Ramage, G. Candida auris: A Decade of Understanding of an Enigmatic Pathogenic Yeast. J. Fungi 2020, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Chowdhary, A.; Sharma, C.; Meis, J.F. Candida auris: A rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 2017, 13, e1006290. [Google Scholar] [CrossRef] [PubMed]
- Larkin, E.; Hager, C.; Chandra, J.; Mukherjee, P.K. The emerging pathogen Candida auris: Growth phenotype, virulence factors, activity of antifungals, and effect of SCY-078, a novel glucan synthesis inhibitor, on growth morphology and biofilm formation emily. Antimicrob. Agents Chemother. 2017, 61, e02396-16. [Google Scholar] [CrossRef] [Green Version]
- Rossato, L.; Colombo, A.L. Candida auris: What have we learned about its mechanisms of pathogenicity? Front. Microbiol. 2018, 9, 1–6. [Google Scholar] [CrossRef]
- de Cássia Or de Cássia Orlandi Sardi, J.; Silva, D.R.; Soares Mendes-Giannini, M.J.; Rosalen, P.L. Candida auris: Epidemiology, risk factors, virulence, resistance, and therapeutic options. Microb. Pathog. 2018, 125, 116–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhary, A.; Anil Kumar, V.; Sharma, C.; Prakash, A.; Agarwal, K.; Babu, R. Multidrug-resistant endemic clonal strain of Candida auris in India. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 919–926. [Google Scholar] [CrossRef]
- Chowdhary, A.; Sharma, C.; Duggal, S.; Agarwal, K.; Prakash, A.; Singh, P.K.; Jain, S.; Kathuria, S.; Randhawa, H.S.; Hagen, F.; et al. New clonal strain of Candida auris, Delhi, India. Emerg. Infect. Dis. 2013, 19, 1670–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, H.; Bing, J.; Hu, T.; Ennis, C.L.; Nobile, C.J.; Huang, G. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog. 2020, 16, e1008921. [Google Scholar] [CrossRef]
- Borman, A.M. Of mice and men and larvae: Galleria mellonella to model the early host-pathogen interactions after fungal infection. Virulence 2018, 9, 9–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, T.C.; de Barros, P.P.; Fugisaki, L.R.O.; Rossoni, R.D.; Ribeiro, F.C.; de Menezes, R.T. Recent advances in the use of Galleria mellonella model to study immune responses against human pathogens. J. Fungi 2018, 4, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz, J.E.; Ramirez, L.M.; Dias, L.D.S.; Rivas, L.A.; Ramos, L.S.; Santos, A.L.S. Pathogenicity levels of Colombian strains of Candida auris and brazilian strains of Candida haemulonii species complex in both murine and Galleria mellonella experimental models. J. Fungi 2020, 6, 104. [Google Scholar] [CrossRef]
- Firacative, C.; Khan, A.; Duan, S.; Ferreira-Paim, K.; Leemon, D.; Meyer, W. Rearing and maintenance of Galleria mellonella and its application to study fungal virulence. J. Fungi 2020, 6, 130. [Google Scholar] [CrossRef]
- Brennan, M.; Thomas, D.Y.; Whiteway, M.; Kavanagh, K. Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. FEMS Immunol. Med. Microbiol. 2002, 34, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Leone, R.; Cabeli, P.; Sinicco, A.; Ito Kuwa, S.; Aoki, S.; Vidotto, V. Relationship between protease production and capsule size in Cryptococcus neoformans. J. Mycol. Med. 1999, 9, 42–44. [Google Scholar]
- Price, M.F.; Wilkinson, I.D.; Gentry, L.O. Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia 1982, 20, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Tsang, C.S.P.; Chu, F.C.S.; Leung, W.K.; Jin, L.J.; Samaranayake, L.P.; Siu, S.C. Phospholipase, proteinase and haemolytic activities of Candida albicans isolated from oral cavities of patients with type 2 diabetes mellitus. J. Med. Microbiol. 2007, 56, 1393–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Champion, O.L.; Wagley, S.; Titball, R.W. Galleria mellonella as a model host for microbiological and toxin research. Virulence 2016, 7, 840–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borman, A.M.; Szekely, A.; Johnson, E.M. Comparative pathogenicity of United Kingdom isolates of the emerging Candida auris and other key pathogenic Candida species. mSphere 2016, 1, e00189-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyre, D.W.; Sheppard, A.E.; Madder, H.; Moir, I.; Moroney, R.; Quan, T.P. A Candida auris Outbreak and Its Control in an Intensive Care Setting. N. Engl. J. Med. 2018, 379, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Jeffery-Smith, A.; Taori, S.K.; Schelenz, S.; Jeffery, K.; Johnson, E.M.; Borman, A.; Manuel, R.; Brown, C.S. Candida auris: A review of the literature. Clin. Microbiol. Rev. 2017, 31, e00029-17. [Google Scholar] [CrossRef] [Green Version]
- Corsi-Vasquez, G.; Ostrosky-Zeichner, L. Candida auris: What have we learned so far? Curr. Opin. Infect. Dis. 2019, 32, 559–564. [Google Scholar] [CrossRef]
- Plachouras, D.; Lötsch, F.; Kohlenberg, A.; Monnet, D.L. Candida auris survey collaborative group. Candida auris: Epidemiological situation, laboratory capacity and preparedness in the European Union and European Economic Area*, January 2018 to May 2019. Euro Surveill. 2020, 25, 2000240. [Google Scholar]
- Zuluaga-Rodríguez, A. Candida auris: Estrategias y retos para prevenir un brote Candida. Biomédica 2020, 40, 5–10. [Google Scholar] [CrossRef]
- Fasciana, T.; Cortegiani, A.; Ippolito, M.; Giarratano, A.; Di Quattro, O.; Lipari, D. Candida auris: An overview of how to screen, detect, test and control this emerging pathogen. Antibiotics 2020, 9, 778. [Google Scholar] [CrossRef]
- Sherry, L.; Ramage, G.; Kean, R.; Borman, A.; Johnson, E.M.; Richardson, M.D. Biofilm-forming capability of highly virulent, multidrug-resistant Candida auris. Emerg. Infect. Dis. 2017, 23, 328–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romera, D.; Aguilera-Correa, J.J.; García-Coca, M.; Mahillo-Fernández, I.; Viñuela-Sandoval, L.; García-Rodríguez, J. The Galleria mellonella infection model as a system to investigate the virulence of Candida auris strains. Pathog. Dis. 2020, 78, ftaa067. [Google Scholar] [CrossRef]
- Chaffin, W.L.; López-Ribot, J.L.; Casanova, M.; Gozalbo, D.; Martínez, J.P. Cell Wall and Secreted Proteins of Candida albicans: Identification, Function, and Expression. Microbiol. Mol. Biol. Rev. 1998, 62, 130–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polke, M.; Hube, B.; Jacobsen, I.D. Candida survival strategies. Adv. Appl. Microbiol. 2015, 91, 139–235. [Google Scholar] [PubMed]
- Manns, J.M.; Mosser, D.M.; Buckley, H.R. Production of a hemolytic factor by Candida albicans. Infect. Immun. 1994, 62, 5154–5156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junqueira, J.C.; Vilela, S.F.; Rossoni, R.D.; Barbosa, J.O.; Costa, A.C.; Rasteiro, V.M. Oral colonization by yeasts in HIV-positive patients in Brazil. Rev. Inst. Med. Trop. Sao Paulo 2012, 54, 17–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossoni, R.D.; Barbosa, J.O.; Vilela, S.F.; Santos, J.D.; Jorge, A.O.; Junqueira, J.C. Correlation of phospholipase and proteinase production of Candida with in vivo pathogenicity in Galleria mellonella. Braz. J. Oral Sci. 2013, 12, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Pakshir, K.; Zomorodian, K.; Karamitalab, M.; Jafari, M.; Taraz, H.; Ebrahimi, H. Phospholipase, esterase and hemolytic activities of Candida spp. isolated from onychomycosis and oral lichen planus lesions. J. Mycol. Med. 2013, 23, 113–118. [Google Scholar] [CrossRef]
- Parra-Giraldo, C.M.; Valderrama, S.L.; Cortes-Fraile, G.; Garzón, J.R.; Ariza, B.E.; Morio, F. First report of sporadic cases of Candida auris in Colombia. Int. J. Infect. Dis. 2018, 69, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Morales-López, S.E.; Parra-Giraldo, C.M.; Ceballos-Garzón, A.; Martínez, H.P.; Rodríguez, G.J.; Álvarez-Moreno, C.A.; Rodríguez, J.Y. Invasive infections with multidrug-resistant yeast Candida auris, Colombia. Emerg. Infect. Dis. 2017, 23, 162–164. [Google Scholar] [CrossRef] [Green Version]
n Strains | Morphology | Process | |||
---|---|---|---|---|---|
Aggregates | Non-Aggregates | Invasive | Colonization | ||
Valledupar | 58 | 22 | 36 | 31 | 27 |
Cartagena | 49 | 13 | 36 | 26 | 23 |
Total | 107 | 35 | 72 | 57 | 50 |
Virulence | Process | Total | |
---|---|---|---|
Invasive | Colonization | ||
High | 14 | 24 | 38 |
Low | 43 | 26 | 69 |
Total | 57 | 50 | 107 |
Virulence | Morphology | Total | |
---|---|---|---|
Aggregates | Non-Aggregates | ||
High | 16 | 22 | 38 |
Low | 19 | 50 | 69 |
Total | 35 | 72 | 107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvajal, S.K.; Alvarado, M.; Rodríguez, Y.M.; Parra-Giraldo, C.M.; Varón, C.; Morales-López, S.E.; Rodríguez, J.Y.; Gómez, B.L.; Escandón, P. Pathogenicity Assessment of Colombian Strains of Candida auris in the Galleria mellonella Invertebrate Model. J. Fungi 2021, 7, 401. https://doi.org/10.3390/jof7060401
Carvajal SK, Alvarado M, Rodríguez YM, Parra-Giraldo CM, Varón C, Morales-López SE, Rodríguez JY, Gómez BL, Escandón P. Pathogenicity Assessment of Colombian Strains of Candida auris in the Galleria mellonella Invertebrate Model. Journal of Fungi. 2021; 7(6):401. https://doi.org/10.3390/jof7060401
Chicago/Turabian StyleCarvajal, Silvia Katherine, Maira Alvarado, Yuli M. Rodríguez, Claudia M. Parra-Giraldo, Carmen Varón, Soraya E. Morales-López, José Y. Rodríguez, Beatriz L. Gómez, and Patricia Escandón. 2021. "Pathogenicity Assessment of Colombian Strains of Candida auris in the Galleria mellonella Invertebrate Model" Journal of Fungi 7, no. 6: 401. https://doi.org/10.3390/jof7060401
APA StyleCarvajal, S. K., Alvarado, M., Rodríguez, Y. M., Parra-Giraldo, C. M., Varón, C., Morales-López, S. E., Rodríguez, J. Y., Gómez, B. L., & Escandón, P. (2021). Pathogenicity Assessment of Colombian Strains of Candida auris in the Galleria mellonella Invertebrate Model. Journal of Fungi, 7(6), 401. https://doi.org/10.3390/jof7060401