[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Conjugal Transfer of Antibiotic Resistances in Lactobacillus spp.

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Lactic acid bacteria (LAB) are a heterogeneous group of bacteria which are Gram-positive, facultative anaerobes and non-motile, non-spore forming, with varied shapes from cocci to coccobacilli and bacilli. Lactobacillus is the largest and most widely used bacterial species amongst LAB in fermented foods and beverages. The genus is a common member of human gut microbiome. Several species are known to provide benefits to the human gut via synergistic interactions with the gut microbiome and their ability to survive the gut environment. This ability to confer positive health effects provide them a status of generally recognized as safe (GRAS) microorganisms. Due to their various beneficial characteristics, other factors such as their resistance acquisition were overlooked. Overuse of antibiotics has made certain bacteria develop resistance against these drugs. Antibiotic resistance was found to be acquired mainly through conjugation which is a type of lateral gene transfer. Several in vitro methods of conjugation have been discussed previously depending on their success to transfer resistance. In this review, we have addressed methods that are employed to study the transfer of resistance genes using the conjugation phenomenon in lactobacilli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zheng J, Wittouck S, Salvetti E, Franz CM, Harris HM, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J, Watanabe K (2020) A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Sys Evol Microbiol 70(4):2782–2858. https://doi.org/10.1099/ijsem.0.004107

    Article  CAS  Google Scholar 

  2. Walter J (2008) Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 74(16):4985–4996. https://doi.org/10.1128/AEM.00753-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rossi F, Amadoro C, Colavita G (2019) Members of the Lactobacillus genus complex (LGC) as opportunistic pathogens: a review. Microorganisms 7(5):126. https://doi.org/10.3390/microorganisms7050126

    Article  CAS  PubMed Central  Google Scholar 

  4. Tellez G, Laukova A, Latorre JD, Hernandez-Velasco X, Hargis BM, Callaway T (2015) Food-producing animals and their health in relation to human health. Microb Ecol Health Dis 26:25876. https://doi.org/10.3402/mehd.v26.25876

    Article  PubMed  Google Scholar 

  5. Zommiti M, Chikindas ML, Ferchichi M (2020) Probiotics—live biotherapeutics: a story of success, limitations, and future prospects—not only for humans. Probiotics Antimicrob Proteins 12:1266–1289. https://doi.org/10.1007/s12602-019-09570-5

    Article  PubMed  Google Scholar 

  6. FDA (2010) Generally Recognized as Safe (GRAS). Notifications FDA. https://www.fda.gov/food/generally-recognized-safe-gras/microorganisms-microbial-derivedingredients-used-food-partial-list. Accessed 1 Oct 2019

  7. Mishra V, Upgade A, Sharma KP (2009) Role of food chain containing lactic acid bacteria in antibiotic resistance. Curr Science 97(12):1703

    Google Scholar 

  8. Doron S, Snydman DR (2015) Risk and safety of probiotics. Clin Infect Dis 60(Suppl 2):S129–S134. https://doi.org/10.1093/cid/civ085

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sanders ME, Merenstein DJ, Ouwehand AC, Reid G, Salminen S, Cabana MD, Paraskevakos G, Leyer G (2016) Probiotic use in at-risk populations. J Am Pharm Assoc 56:680–686. https://doi.org/10.1016/j.japh.2016.07.001

    Article  Google Scholar 

  10. Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzopoulos G, Pot B, Tsakalidou E (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int Dairy J 16:189–199. https://doi.org/10.1016/j.idairyj.2005.02.009

    Article  CAS  Google Scholar 

  11. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC (2014) Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroentero Hepat 11(8):506. https://doi.org/10.1038/nrgastro.2014.66

    Article  Google Scholar 

  12. Suez J, Zmora N, Segal E, Elinav E (2019) The pros, cons, and many unknowns of probiotics. Nat Med 25(5):716–729. https://doi.org/10.1038/s41591-019-0439-x

    Article  CAS  PubMed  Google Scholar 

  13. Khalesi S, Bellissimo N, Vandelanotte C, Williams S, Stanley D, Irwin C (2019) A review of probiotic supplementation in healthy adults: helpful or hype? Eur J of Clin Nutri 73(1):24–37. https://doi.org/10.1038/s41430-018-0135-9

    Article  CAS  Google Scholar 

  14. WHO/FAO (2006) Probiotics in food health and nutritional properties and guidelines for evaluation. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  15. Mishra V, Prasad DN (2005) Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int J of Food Microbiol 103(1):109–115. https://doi.org/10.1016/j.ijfoodmicro.2004.10.047

    Article  Google Scholar 

  16. Bhushan B, Sakhare SM, Narayan KS, Kumari M, Mishra V, Dicks LMT (2020) Characterization of riboflavin-producing strains of Lactobacillus plantarum as potential probiotic candidate through in vitro assessment and principal component analysis. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-020-09696-x

    Article  Google Scholar 

  17. EFSA (2008) Technical guidance-update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance. EFSA J 732:1–15. https://doi.org/10.2903/j.efsa.2008.732

    Article  Google Scholar 

  18. Liu L, Chen X, Skogerbo G, Zhang P, Chen R, He S, Huang DW (2012) The human microbiome: a hot spot of microbial horizontal gene transfer. Genomics 100:265–270. https://doi.org/10.1016/j.ygeno.2012.07.012

    Article  CAS  PubMed  Google Scholar 

  19. Founou LL, Founou RC, Essack SY (2016) Antibiotic resistance in the food chain: a developing country-perspective. Front Microbiol 7:1881. https://doi.org/10.3389/fmicb.2016.01881

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lerner A, Matthias T, Aminov R (2017) Potential effects of horizontal gene exchange in the human gut. Front Immunol 8:1630. https://doi.org/10.3389/fimmu.2017.01630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zarzecka U, Zadernowska A, Chajęcka-Wierzchowska W (2020) Starter cultures as a reservoir of antibiotic resistant microorganisms. LWT 19:109424. https://doi.org/10.1016/j.lwt.2020.109424

    Article  CAS  Google Scholar 

  22. Herman L, Chemaly M, Cocconcelli PS, Fernandez P, Klein G, Peixe L, Prieto M, Querol A, Suarez JE, Sundh I, Vlak J (2019) The qualified presumption of safety assessment and its role in EFSA risk evaluations: 15 years past. FEMS Microbiol Lett 366(1):17–23. https://doi.org/10.1093/femsle/fny260

    Article  CAS  Google Scholar 

  23. Leuschner RGK, Robinson TP, Hugas M et al (2010) Qualified presumption of safety (QPS): a generic risk assessment approach for biological agents notified to the European Food Safety Authority (EFSA). Trends Food Sci Tech 21:425–435

    Article  CAS  Google Scholar 

  24. European Food Safety Authority (EFSA) Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10:2740–2750

    Google Scholar 

  25. Imperial IC, Ibana JA (2016) Addressing the antibiotic resistance problem with probiotics: reducing the risk of its double-edged sword effect. Front Microbiol 7:1983. https://doi.org/10.3389/fmicb.2016.01983

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ammor MS, Florez AB, Mayo B (2007) Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol 24:559–570. https://doi.org/10.1016/j.fm.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  27. EFSA, ECDC, (2018) The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. EFSA J 16:5182. https://doi.org/10.2903/j.efsa.2018.5182

    Article  CAS  Google Scholar 

  28. Frieri M, Kumar K, Boutin A (2017) Antibiotic resistance. J Infect Public Health 10(4):369–378. https://doi.org/10.1016/j.jiph.2016.08.007

    Article  PubMed  Google Scholar 

  29. Akova M (2016) Epidemiology of antimicrobial resistance in bloodstream infections. Virulence 7(3):252–266. https://doi.org/10.1080/21505594.2016.1159366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat M, Baloch Z (2018) Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11:1645–1658. https://doi.org/10.2147/IDR.S173867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Belletti N, Gatti M, Bottari B, Neviani E, Tabanelli G, Gardini F (2009) Antibiotic resistance of lactobacilli isolated from two Italian hard cheeses. J Food Prot 72:2162–2169. https://doi.org/10.4315/0362-028X-72.10.2162

    Article  CAS  PubMed  Google Scholar 

  32. Nawaz M, Wang J, Zhou A, Ma C, Wu X, Moore JE, Millar BC, Xu J (2011) Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Curr Microbiol 62:1081–1089. https://doi.org/10.1007/s00284-010-9856-2

    Article  CAS  PubMed  Google Scholar 

  33. Guo HL, Pan L, Li LN, Lu J, Kwok L, Menghe B, Zhang HP, Zhang WY (2017) Characterization of antibiotic resistance genes from Lactobacillus isolated from traditional dairy products. J Food Sci 82:724–730. https://doi.org/10.1111/1750-3841.13645

    Article  CAS  PubMed  Google Scholar 

  34. Ledina T, Mohar-Lorberg P, Golob M, Djordjevic J, Bogovic-Matijasic B, Bulajic S (2018) Tetracycline resistance in lactobacilli isolated from Serbian traditional raw milk cheeses. J Food Sci Technol 55:1426–1434. https://doi.org/10.1007/s13197-018-3057-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rozman V, Lorbeg PM, Accetto T, Matijasic BB (2020) Characterization of antimicrobial resistance in lactobacilli and bifidobacteria used as probiotics or starter cultures based on integration of phenotypic and in silico data. Int J Food Microbiol 314:108388. https://doi.org/10.1016/j.ijfoodmicro.2019.108388

    Article  CAS  PubMed  Google Scholar 

  36. Dec M, Nowaczek A, Stępien-Pysniak D, Wawrzykowski J, Urban-Chmiel R (2018) Identification and antibiotic susceptibility of lactobacilli isolated from turkeys. BMC Microbiol 18(1):1–14. https://doi.org/10.1186/s12866-018-1269-6

    Article  CAS  Google Scholar 

  37. Abriouel H, CasadoMunoz MDC, Lavilla Lerma L, Perez Montoro B, Bockelmann W, Pichner R, Kabisch J, Cho GS, Franz CMAP, Galvez A, Benomar N (2015) New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res Int 78:465–481. https://doi.org/10.1016/j.foodres.2015.09.016

    Article  CAS  PubMed  Google Scholar 

  38. Campedelli I, Mathur H, Salvetti E, Clarke S, Rea MC, Torriani S, Ross RP, Hill C, O’Toole PW (2019) Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01738-18

    Article  PubMed  Google Scholar 

  39. Bulajic S, Mijacevic Z (2011) Antimicrobial susceptibility of lactic acid bacteria isolated from Sombor cheese. Acta Veterinaria-Beograd 61(2–3):247–258. https://doi.org/10.2298/AVB1103247B

    Article  Google Scholar 

  40. Alvarez-Cisneros YM, Ponce-Alquicira E (2018) Antibiotic resistance in lactic acid bacteria. Antimicrob Resist-A Glob Threat. https://doi.org/10.5772/intechopen.80624

    Article  Google Scholar 

  41. Soucy SM, Huang J, Gogarten JP (2015) Horizontal gene transfer: building the web of life. Nat Rev Genet 16(8):472–482

    Article  CAS  PubMed  Google Scholar 

  42. Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Virulence Mech Bact Pathog. https://doi.org/10.1128/9781555819286.ch17

    Article  Google Scholar 

  43. Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria—a review. Int J Food Microbiol 105:281–295. https://doi.org/10.1016/j.ijfoodmicro.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  44. Salvetti E, O’Toole PW (2017) When regulation challenges innovation: the case of the genus Lactobacillus. Trends Food Sci Technol 66:187–194. https://doi.org/10.1016/j.tifs.2017.05.009

    Article  CAS  Google Scholar 

  45. CDC Antimicrobial Resistance (2017). www.cdc.gov/ncidod/aip/research/ar.html

  46. Gevers D, Huys G, Swings J (2003) In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. FEMS Microbiol Lett 225:125–130. https://doi.org/10.1016/S0378-1097(03)00505-6

    Article  CAS  PubMed  Google Scholar 

  47. Huys G, D’Haene K, Collard JM, Swings J (2004) Prevalence and molecular characterization of tetracycline resistance in Enterococcus isolates from food. Appl Environ Microbiol 70:1555–1562. https://doi.org/10.1128/AEM.70.3.1555-1562.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Toomey N, Bolton D, Fanning S (2010) Characterization of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs. Res Microbiol 161:127–135. https://doi.org/10.1016/j.resmic.2009.12.010

    Article  CAS  PubMed  Google Scholar 

  49. Thumu SCR, Halami PM (2019) Conjugal transfer of erm(B) and multiple tet genes from Lactobacilllus spp. to bacterial pathogens in animal gut, in vitro and during food fermentation. Food Res Int 116:1066–1075. https://doi.org/10.1016/j.foodres.2018.09.046

    Article  CAS  PubMed  Google Scholar 

  50. Mater DD, Langella P, Corthier G, Flores MJ (2007) A probiotic Lactobacillus strain can acquire vancomycin resistance during digestive transit in mice. J Mol Microbiol Biotechnol 14:123–127. https://doi.org/10.1159/000106091

    Article  CAS  Google Scholar 

  51. Sharma P, Tomar SK, Goswami P, Sangwan V, Singh R (2014) Antibiotic resistance among commercially available probiotics. Food Res Int 57:176–195. https://doi.org/10.1016/j.foodres.2014.01.025

    Article  CAS  Google Scholar 

  52. Gueimonde M, Sanchez B, de los Reyes-Gavilan CG, Margolles A (2013) Antibiotic resistance in probiotic bacteria. Front Microbiol 14:202. https://doi.org/10.3389/fmicb.2013.00202

    Article  Google Scholar 

  53. Fraqueza MJ (2015) Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. Int J Food Microbiol 212:76–88. https://doi.org/10.1016/j.ijfoodmicro.2015.04.035

    Article  CAS  PubMed  Google Scholar 

  54. Von Wintersdorff CJ, Penders J, Van Niekerk JM, Mills ND, Majumder S, Van Alphen LB, Wolffs PF (2016) Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 7:173. https://doi.org/10.3389/fmicb.2016.00173

    Article  Google Scholar 

  55. García-Aljaro C, Balleste E, Muniesa M (2017) Beyond the canonical strategies of horizontal gene transfer in prokaryotes. Curr Opin Microbiol 38:95–105. https://doi.org/10.1016/j.mib.2017.04.011

    Article  CAS  PubMed  Google Scholar 

  56. Griffith F (1928) The significance of pneumococcal types. J Hyg (Lond) 27:113–159. https://doi.org/10.1017/S0022172400031879

    Article  CAS  Google Scholar 

  57. Hotchkiss RD (1951) Transfer of penicillin resistance in pneumococci by the deoxyribonucleate derived from resistant cultures. Cold Spring Harb Symp Quant Biol 16:457–461. https://doi.org/10.1101/SQB.1951.016.01.032

    Article  CAS  PubMed  Google Scholar 

  58. Huddleston JR (2014) Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist 7:167–176. https://doi.org/10.2147/IDR.S48820

    Article  PubMed  PubMed Central  Google Scholar 

  59. Johnston C, Martin B, Fichant G, Polard P, Claverys JP (2014) Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol 12:181–196. https://doi.org/10.1038/nrmicro3199

    Article  CAS  PubMed  Google Scholar 

  60. Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Mol Biol Rev 58:563–602

    CAS  Google Scholar 

  61. Landete JM, Arqués JL, Peirotén Á, Langa S, Medina M (2014) An improved method for the electrotransformation of lactic acid bacteria: a comparative survey. J Microbiol Methods 105:130–133. https://doi.org/10.1016/j.mimet.2014.07.022

    Article  CAS  PubMed  Google Scholar 

  62. Kathiriya MR, Gawai KM, Prajapati JB (2019) Transformation of lactobacilli plasmid by electroporation into probiotic strain Lactobacillus helveticus MTCC 5463. Int J of Ferment Foods 8:33–40. https://doi.org/10.30954/2321-712X.01.2019.3

    Article  Google Scholar 

  63. von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen LB, Savelkoul PH, Wolffs PF (2016) Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 7:173. https://doi.org/10.3389/fmicb.2016.00173

    Article  Google Scholar 

  64. Ubukata K, Konno M, Fujii R (1975) Transduction of drug resistance to tetracycline, chloramphenicol, macrolides, lincomycin and clindamycin with phages induced from Streptococcus pyogenes. J Antibiot 28:681–688. https://doi.org/10.7164/antibiotics.28.681

    Article  CAS  Google Scholar 

  65. Mazaheri Nezhad Fard R, Barton MD, Heuzenroeder MW (2011) Bacteriophage-mediated transduction of antibiotic resistance in enterococci. Lett Appl Microbiol 52:559–564. https://doi.org/10.1111/j.1472-765X.2011.03043.x

    Article  CAS  PubMed  Google Scholar 

  66. Billard-Pomares T, Fouteau S, Jacquet ME, Roche D, Barbe V, Castellanos M, Bouet JY, Cruveiller S, Médigue C, Blanco J, Clermont O (2014) Characterization of a P1-like bacteriophage carrying an SHV- 2 extended-spectrum β-lactamase from an Escherichia coli strain. Antimicrob Agents Chemother 58:6550–6557. https://doi.org/10.1128/AAC.03183-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schmieger H, Schicklmaier P (1999) Transduction of multiple drug resistance of Salmonella enteric serovartyphimuriumDT104. FEMS Microbiol Lett 170:251–256. https://doi.org/10.1111/j.1574-6968.1999.tb13381.x

    Article  CAS  PubMed  Google Scholar 

  68. Varga M, Kuntova L, Pantucek R, Maslanova I, Ruzickova V, Doskar J (2012) Efficient transfer of antibiotic resistance plasmids by transduction within methicillin-resistant Staphylococcus aureus USA 300 clone. FEMS Microbiol Lett 332:146–152. https://doi.org/10.1111/j.1574-6968.2012.02589.x

    Article  CAS  PubMed  Google Scholar 

  69. Yasmin A, Kenny JG, Shankar J, Darby AC, Hall N, Edwards C, Horsburgh MJ (2010) Comparative genomics and transduction potential of Enterococcus faecalis temperate bacteriophages. J Bacteriol 192:1122–1130. https://doi.org/10.1128/JB.01293-09

    Article  CAS  PubMed  Google Scholar 

  70. Smillie C, Garcillan-Barcia MP, Francia MV, Rocha EP, delaCruz F, (2010) Mobility of plasmids. Microbiol Mol Biol Rev 74:434–452. https://doi.org/10.1128/MMBR.00020-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wozniak RA, Waldor MK (2010) Integrative and conjugative elements mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8:552–563. https://doi.org/10.1038/nrmicro2382

    Article  CAS  PubMed  Google Scholar 

  72. Lederberg J, Tatum EL (1946) Gene recombination in E. coli. Nature 158:558–558. https://doi.org/10.1038/158558a0

    Article  CAS  PubMed  Google Scholar 

  73. Kyndt T, Quispe D, Zhai H, Jarret R, Ghislain M, Liu Q, Gheysen G, Kreuze JF (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Natl Acad Sci USA 112:5844–5849. https://doi.org/10.1073/pnas.1419685112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Anisimova E, Yarullina D (2018) Characterization of erythromycin and tetracycline resistance in Lactobacillus fermentum strains. Int J Microbiol 2018:3912326. https://doi.org/10.1155/2018/3912326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lampkowska J, Feld L, Monaghan A, Toomey N, Schjørring S, Jacobsen B, van der Voet H, Andersen SR, Bolton D, Aarts H, Krogfelt KA (2008) A standardized conjugation protocol to assess antibiotic resistance transfer between lactococcal species. Int J Food Microbiol 127:172–175. https://doi.org/10.1016/j.ijfoodmicro.2008.06.017

    Article  CAS  PubMed  Google Scholar 

  76. Toomey N, Monaghan A, Fanning S, Bolton D (2009) Assessment of antimicrobial resistance transfer between lactic acid bacteria and potential foodborne pathogens using in vitro methods and mating in food matrix. Foodborne Pathog Dis 6:925–933. https://doi.org/10.1089/fpd.2009.0278

    Article  CAS  PubMed  Google Scholar 

  77. Sasaki Y, Taketomo N, Sasaki T (1988) Factors affecting transfer frequency of pAMß1 from Streptococcus faecalis to Lactobacillus plantarum. J Bacteriol 170:5939–5942. https://doi.org/10.1128/jb.170.12.5939-5942.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jacobsen L, Wilcks A, Hammer K, Huys G, Gevers D, Andersen SR (2007) Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiol Ecol 59:158–166. https://doi.org/10.1111/j.1574-6941.2006.00212.x

    Article  CAS  PubMed  Google Scholar 

  79. Feld F, Schjorring S, Hammer K, Licht TR, Danielsen M, Krogfelt K, Wilcks S (2008) Selective pressure affects transfer and establishment of a Lactobacillus plantarum resistance plasmid in the gastrointestinal environment. J Antimicrob Chemother 61:845–852. https://doi.org/10.1093/jac/dkn033

    Article  CAS  PubMed  Google Scholar 

  80. Preethi C, Thumu SCR, Halami PM (2017) Occurrence and distribution of multiple antibiotic-resistant Enterococcus and Lactobacillus spp. from Indian poultry: in vivo transferability of their erythromycin tetracycline and vancomycin resistance. Ann Microbiol 67:395–404. https://doi.org/10.1007/s13213-017-1270-6

    Article  CAS  Google Scholar 

  81. Gazzola S, Fontana C, Bassi D, Cocconcelli PS (2012) Assessment of tetracycline and erythromycin resistance transfer during sausage fermentation by culture-dependent and independent methods. Food Microbiol 30:348–354. https://doi.org/10.1016/j.fm.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  82. Cocconcelli PS, Cattivelli D, Gazzola S (2003) Gene transfer of vancomycin and tetracycline resistances among Enterococcus faecalis during cheese and sausage fermentations. Int J Food Microbiol 88:315–323. https://doi.org/10.1016/s0168-1605(03)00194-6

    Article  CAS  PubMed  Google Scholar 

  83. Toomey N, Monaghan A, Fanning S, Bolton D (2009) Transfer of antibiotic resistance marker genes between lactic acid bacteria in model rumen and plant environments. Appl Environ Microbiol 75:3146–3152. https://doi.org/10.1128/AEM.02471-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work is funded by National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli, Sonepat (India).

Author information

Authors and Affiliations

Authors

Contributions

AKO contributed in conceiving, writing the manuscript, prepared figures. NPS contributed in refining the manuscript and VM conceived, revised the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Vijendra Mishra.

Ethics declarations

Conflicts of interest

There is no declared conflict of interest.

Ethical Approval

The paper does not contain any study on human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojha, A.K., Shah, N.P. & Mishra, V. Conjugal Transfer of Antibiotic Resistances in Lactobacillus spp.. Curr Microbiol 78, 2839–2849 (2021). https://doi.org/10.1007/s00284-021-02554-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02554-1

Navigation