[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Characterization and Transferability of erm and tet Antibiotic Resistance Genes in Lactobacillus spp. Isolated from Traditional Fermented Milk

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Lactobacillus is a widely used bacteria and consumed through various fermented foods and beverages. Strains have been shown to carry resistance genes and mobile genetic elements with their ability to transfer the resistance to sensitive pathogenic strains. To study this, 4 cultures of Lactobacillus were isolated from traditional fermented milk. The isolates were able to grow up to 4% (w/v) NaCl concentration and 45 °C temperature, and showed > 97% 16S rRNA gene similarities with Lactobacillus fermentum. All the isolates were phenotypically screened for the presence of antibiotic resistance. Minimum inhibitory concentration (MIC) as microbiological breakpoints were observed against a varied class of antibiotics. Isolates AKO 94.6, DVM 95.7, and NIFTEM 95.8 were explicitly resistant to ampicillin, ciprofloxacin and vancomycin with MIC well beyond the maximum range of 256 µg/ml in the E-strip test. While isolate SKL1 was sensitive to ampicillin and showed MIC at 0.25 µg/ml but resistant to streptomycin and trimethoprim (MIC > 256 µg/ml). Molecular characterization showed the presence of tet(M) gene in three isolates SKL1, DVM 95.7, and NIFTEM 95.8 which was chromosomally associated resistance determinants while erm(B) resistance gene was detected in isolates DVM 95.7 and NIFTEM 95.8 only which was a plasmid associated gene and could be transferrable conjugally. Gene for Tn916 family (xis) was also observed in isolates DVM 95.7 and NIFTEM 95.8. Transferability of antibiotic resistance to pathogenic recipient strains was examined in isolates DVM 95.7 and NIFTEM 95.8 in different food matrices. The highest conjugation frequency with ~ 10–1 was obtained in alfalfa seed sprouts. This study reports the presence of acquired gene resistance in Lactobacillus species and dissemination to susceptible strains of bacteria in different food matrices. 16S rRNA gene sequences of isolates were uploaded to the NCBI GenBank database to retrieve the accession number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References:

  1. Generally Recognized as Safe (GRAS) | FDA. https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras. Accessed 16 Dec 2021

  2. Hill C, Guarner F, Reid G et al (2014) Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514. https://doi.org/10.1038/nrgastro.2014.66

    Article  PubMed  Google Scholar 

  3. Guo Z, Liu XM, Zhang QX et al (2011) Influence of consumption of probiotics on the plasma lipid profile : a meta-analysis of randomised controlled trials. Nutr Metab Cardiovasc Dis 21:844–850. https://doi.org/10.1016/j.numecd.2011.04.008

    Article  PubMed  CAS  Google Scholar 

  4. Guarino A, Guandalini S, Lo VA (2015) Probiotics for prevention and treatment of diarrhea. J Clin Gastroeterol 49:37–45. https://doi.org/10.1097/MCG.0000000000000349

    Article  CAS  Google Scholar 

  5. Ford AC, Quigley EMM, Lacy BE et al (2014) Efficacy of prebiotics probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation. Syst Rev Meta-anal. https://doi.org/10.1038/ajg.2014.202

    Article  Google Scholar 

  6. Irwin C, Khalesi S, Cox AJ et al (2017) Effect of 8-weeks prebiotics / probiotics supplementation on alcohol metabolism and blood biomarkers of healthy adults : a pilot study. Eur J Nutr. https://doi.org/10.1007/s00394-017-1437-8

    Article  PubMed  Google Scholar 

  7. Mishra V, Shah C, Mokashe N et al (2015) Probiotics as potential antioxidants: a systematic review. J Agric Food Chem 63:3615–3626. https://doi.org/10.1021/jf506326t

    Article  PubMed  CAS  Google Scholar 

  8. Ratna Sudha M, Ahire JJ, Jayanthi N et al (2019) Effect of multi-strain probiotic (UB0316) in weight management in overweight/obese adults: A 12-week double blind, randomised, placebo-controlled study. Benef Microbes 10:855–866. https://doi.org/10.3920/BM2019.0052

    Article  PubMed  Google Scholar 

  9. Madempudi RS, Neelamraju J, Mokashe NU, Ahire JJ (2022) Probiotics in the management of diabetes. Probiotics. https://doi.org/10.1016/B978-0-323-85170-1.00005-1

    Article  Google Scholar 

  10. Fao J, Working WHO, Report G, et al (2002) Guidelines for the evaluation of probiotics in food. pp 1–11

  11. Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria: a review. Int J Food Microbiol 105:281–295. https://doi.org/10.1016/j.ijfoodmicro.2005.03.008

    Article  PubMed  CAS  Google Scholar 

  12. Nawaz M, Wang J, Zhou A et al (2011) Characterization and transfer of antibiotic resistance in Lactic Acid Bacteria from fermented food products. Curr Microbiol 62(3):1081–1089. https://doi.org/10.1007/s00284-010-9856-2

    Article  PubMed  CAS  Google Scholar 

  13. Vorlová L, Karpíšková R (2020) Assessment of antibioitc resistance in starter and non-starter lactobacilli of food origin. Acta Vet Brno 89:401–411. https://doi.org/10.2754/avb202089040401

    Article  Google Scholar 

  14. Food E, Authority S (2018) The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. EFSA J. https://doi.org/10.2903/j.efsa.2018.5182

    Article  Google Scholar 

  15. Abriouel H, del Casado Muñoz M, C, Lavilla Lerma L, et al (2015) New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res Int 78:465–481. https://doi.org/10.1016/j.foodres.2015.09.016

    Article  PubMed  CAS  Google Scholar 

  16. Van Reenen CA, Dicks LMT (2011) Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: What are the possibilities? A review. Arch Microbiol 193:157–168. https://doi.org/10.1007/s00203-010-0668-3

    Article  PubMed  CAS  Google Scholar 

  17. Feld L, Schjørring S, Hammer K et al (2008) Selective pressure affects transfer and establishment of a Lactobacillus plantarum resistance plasmid in the gastrointestinal environment. J Antimicrob Chemother 61(4):845–852. https://doi.org/10.1093/jac/dkn033

    Article  PubMed  CAS  Google Scholar 

  18. Perreten V, Schwarz F, Cresta L et al (1997) Antibiotic resistance spread in food [10]. Nature 389:801–802. https://doi.org/10.1038/39767

    Article  PubMed  CAS  Google Scholar 

  19. Toomey N, Bolton D (2010) Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs. Res Microbiol 161:127–135. https://doi.org/10.1016/j.resmic.2009.12.010

    Article  PubMed  CAS  Google Scholar 

  20. Thumu SCR, Halami PM (2019) Conjugal transfer of erm(B) and multiple tet genes from Lactobacillus spp. to bacterial pathogens in animal gut, in vitro and during food fermentation. Food Res Int 116:1066–1075. https://doi.org/10.1016/j.foodres.2018.09.046

    Article  PubMed  CAS  Google Scholar 

  21. Verma A, Ojha AK, Dastager SG et al (2017) Domibacillus mangrovi sp. nov. and Domibacillus epiphyticus sp. nov., isolated from marine habitats of the central west coast of India. Int J Syst Evol Microbiol 67:3063–3070. https://doi.org/10.1099/ijsem.0.002085

    Article  PubMed  CAS  Google Scholar 

  22. Pospiech A, Neumann B (1995) A versatile quick-prep of genomic DNA from Gram-positive bacteria. Trends Genet 11:217–218. https://doi.org/10.1016/S0168-9525(00)89052-6

    Article  PubMed  CAS  Google Scholar 

  23. Dubernet S, Desmasures N, Guéguen M (2002) A PCR-based method for identification of lactobacilli at the genus level. FEMS Microbiol Lett 214:271–275. https://doi.org/10.1016/S0378-1097(02)00895-9

    Article  PubMed  CAS  Google Scholar 

  24. Marchesi JR, Sato T, Weightman AJ et al (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799. https://doi.org/10.1128/aem.64.2.795-799.1998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  PubMed  CAS  Google Scholar 

  26. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Journal TE (2005) Opinion of the scientific panel on additives and products or substances used in animal feed (FEEDAP) on the updating of the criteria used in the assessment of bacteria for resistance to antibiotics of human or veterinary importance. EFSA J 3:1–12. https://doi.org/10.2903/j.efsa.2005.223

    Article  Google Scholar 

  28. Danielsen M, Wind A (2003) Susceptibility of Lactobacillus spp. to antimicrobial agents. J Food Microbiol 82:1–11. https://doi.org/10.1016/S0168-1605(02)00254-4

    Article  CAS  Google Scholar 

  29. European Food Safety Authority (EFSA) (2012) European Food Safety Authority, EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP): Scientific opinion guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10:2740

    Google Scholar 

  30. CLSI - Clinical & Laboratory Standards Institute (2011) Performance standards for antimicrobial susceptibility testing. An informational supplement for global application developed through the Clinical and Laboratory Standards Institute

  31. Gevers D, Huys G, Swings J (2003) In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. FEMS Microbiol Lett 225:125–130. https://doi.org/10.1016/S0378-1097(03)00505-6

    Article  PubMed  CAS  Google Scholar 

  32. Toomey N (2009) Transfer of antibiotic resistance marker genes between Lactic Acid Bacteria in model rumen and plant environments. Appl Environ Microbiol 75:3146–3152. https://doi.org/10.1128/AEM.02471-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Gazzola S, Fontana C, Bassi D, Cocconcelli PS (2012) Assessment of tetracycline and erythromycin resistance transfer during sausage fermentation by culture-dependent and -independent methods. Food Microbiol 30:348–354. https://doi.org/10.1016/j.fm.2011.12.005

    Article  PubMed  CAS  Google Scholar 

  34. Mølbak L, Licht TR, Kvist T et al (2003) Plasmid transfer from Pseudomonas putida to the indigenous bacteria on alfalfa sprouts : characterization, direct quantification, and in situ location of transconjugant cells. Appl Environ Microbiol 69:5536–5542. https://doi.org/10.1128/AEM.69.9.5536

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ammor MS, Belén Flórez A, Mayo B (2007) Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol 24:559–570. https://doi.org/10.1016/j.fm.2006.11.001

    Article  PubMed  CAS  Google Scholar 

  36. Gueimonde M, Sánchez B, Reyes-gavilán CGDL, Margolles A (2013) Antibiotic resistance in probiotic bacteria. Front Microbiol 4:1–6. https://doi.org/10.3389/fmicb.2013.00202

    Article  Google Scholar 

  37. Devirgiliis C, Coppola D, Barile S et al (2009) Characterization of the Tn916 conjugative transposon in a food-borne strain of Lactobacillus paracasei. Appl Environ Microbiol 75:3866–3871. https://doi.org/10.1128/AEM.00589-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Anisimova E, Yarullina D (2018) Characterization of erythromycin and tetracycline resistance in Lactobacillus fermentum strains. Int J Microbiol. https://doi.org/10.1155/2018/3912326

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mendonc AA, Thais B, De LL et al (2016) First identification of Tn916-like element in industrial strains of Lactobacillus vini that spread the tet-M resistance gene. FEMS Microbiol. https://doi.org/10.1093/femsle/fnv240

    Article  Google Scholar 

  40. Bellanger X, Payot S, Leblond-bourget N (2013) Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev. https://doi.org/10.1111/1574-6976.12058

    Article  Google Scholar 

  41. Guo H, Pan L, Li L et al (2017) Characterization of antibiotic resistance genes from Lactobacillus isolated from traditional dairy products. J Food Sci. https://doi.org/10.1111/1750-3841.13645

    Article  PubMed  Google Scholar 

  42. Huys G, D’Haene K, Danielsen M et al (2008) Phenotypic and molecular assessment of antimicrobial resistance in Lactobacillus paracasei strains of food origin. J Food Prot 71:339–344. https://doi.org/10.4315/0362-028X-71.2.339

    Article  PubMed  CAS  Google Scholar 

  43. Campedelli I, Mathur H, Salvetti E et al (2019) Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01738-18

    Article  PubMed  Google Scholar 

  44. Zarzecka U, Zadernowska A, Chaj W (2020) Starter cultures as a reservoir of antibiotic resistant microorganisms. LWT Food Sci Technol. https://doi.org/10.1016/j.lwt.2020.109424

    Article  Google Scholar 

  45. Preethi C, Thumu SCR, Halami PM (2017) Occurrence and distribution of multiple antibiotic-resistant Enterococcus and Lactobacillus spp. from Indian poultry: in vivo transferability of their erythromycin, tetracycline and vancomycin resistance. Ann Microbiol 67:395–404. https://doi.org/10.1007/s13213-017-1270-6

    Article  CAS  Google Scholar 

  46. Microbiol C, Nawaz M, Wang J, Zhou A (2011) Characterization and transfer of antibiotic resistance in Lactic Acid Bacteria from fermented food products characterization and transfer of antibiotic resistance in Lactic Acid Bacteria from fermented food products. Curr Microbiol. https://doi.org/10.1007/s00284-010-9856-2

    Article  Google Scholar 

  47. Ashraf R, Shah NP (2011) Antibiotic resistance of probiotic organisms and safety of probiotic dairy products. Int Food Res J 18:837–853

    Google Scholar 

  48. Chandra S, Thumu R, Halami PM (2012) Presence of erythromycin and tetracycline resistance genes in lactic acid bacteria from fermented foods of Indian origin. Antonie Van Leeuwenhoek. https://doi.org/10.1007/s10482-012-9749-4

    Article  Google Scholar 

  49. Li Y, Li L, Kromann S et al (2019) Antibiotic resistance of Lactobacillus spp. and Streptococcus thermophilus isolated from Chinese fermented milk products. Foodborne Pathog Dis 16:221–228. https://doi.org/10.1089/fpd.2018.2516

    Article  PubMed  CAS  Google Scholar 

  50. Lampkowska J, Feld L, Monaghan A et al (2008) A standardized conjugation protocol to asses antibiotic resistance transfer between lactococcal species. Int J Food Microbiol 127:172–175. https://doi.org/10.1016/j.ijfoodmicro.2008.06.017

    Article  PubMed  CAS  Google Scholar 

  51. Jacobsen L, Wilcks A, Hammer K et al (2007) Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiol Ecol 59:158–166. https://doi.org/10.1111/j.1574-6941.2006.00212.x

    Article  PubMed  CAS  Google Scholar 

  52. Egervärn M, Roos S, Lindmark H (2009) Identification and characterization of antibiotic resistance genes in Lactobacillus reuteri and Lactobacillus plantarum. J Appl Microbiol 107:1658–1668

    Article  PubMed  Google Scholar 

Download references

Funding

The work is funded by the National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli, Sonepat (India).

Author information

Authors and Affiliations

Authors

Contributions

AKO contributed to conceiving, writing the manuscript, prepared figures. NPS contributed to refining the manuscript and VM conceived, revised the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Nagendra Prasad Shah.

Ethics declarations

Conflict of interest

There is no declared conflict of interest.

Ethical Approval

The paper does not contain any study on human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojha, A.K., Shah, N.P. & Mishra, V. Characterization and Transferability of erm and tet Antibiotic Resistance Genes in Lactobacillus spp. Isolated from Traditional Fermented Milk. Curr Microbiol 79, 339 (2022). https://doi.org/10.1007/s00284-022-02980-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02980-9

Navigation