[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Symmetricity of the solution of semidefinite programming

  • Research Papers
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Symmetricity of an optimal solution of Semi-Definite Programming (SDP) is discussed based on the symmetry property of the central path that is traced by a primal-dual interior-point method. A symmetric SDP is defined by operators for rearranging elements of matrices and vectors, and the solution on the central path is proved to be symmetric. Therefore, it is theoretically guaranteed that a symmetric optimal solution is always obtained by using a primal-dual interior-point method even if there exist other asymmetric optimal solutions. The optimization problem of symmetric trusses under eigenvalue constraints is shown to be formulated as a symmetric SDP. Numerical experiments illustrate convergence to strictly symmetric optimal solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alizadeh, F. 1992: Optimization over the positive-semidefinite cone: Interior point methods and combinatorial applications. In: Pardalos, P. (ed.) Advances in optimization and parallel computing, pp. 1–25. Amsterdam: North-Holland

    Google Scholar 

  • Alizadeh, F.; Haeberly, J.-P.A.; Overton, M.L. 1998: Primaldual interior-point methods for semidefinite programming: convergence rates, stability and numerical results. SIAM J. Optim. 8, 746–768

    Article  MATH  MathSciNet  Google Scholar 

  • Arora, J.S.; Tseng, C.H. 1987: IDESIGN User’s Manual Ver. 3.5. Optimal Design Laboratory, The University of Iowa

  • Beling, A.; Verma, S. 1997: Combinatorial complexity of the central curve. In: Proc. Symposium on Theory of Computing

  • Ben-Tal, A.; Nemirovski, A. 1997: Robust truss topology optimization via semidefinite programming. SIAM J. Optim. 7, 991–1016

    Article  MATH  MathSciNet  Google Scholar 

  • Fujisawa, K.; Kojima, M.; Nakata, K. 1999: SDPA (Semidefinite Programming Algorithm) -User’s Manual-. Tech. Report B-308, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Japan

    Google Scholar 

  • Goldfarb, D.; Scheinberg, K. 1998: Interior point trajectories in semidefinite programming. SIAM J. Optim. 8, 871–886

    Article  MATH  MathSciNet  Google Scholar 

  • Halická, M. 1998: Two simple proofs of analyticity of the central path in linear programming. Mathematics Preprint, No. M198. Faculty of Mathematics and Physics, Comenius University, Bratislava, Slovakia

    Google Scholar 

  • de Klerk, E.; Roos, C.; Terlaky, T. 1995: Semi-definite problems in truss topology optimization. Report 95-128. Faculty of Technical Mathematics and Computer Science. Delft University of Technology, Delft, Netherlands

    Google Scholar 

  • Kojima, M.; Mizuno S.; Yoshise A. 1989: A primal-dual interior point algorithm for linear programming, In: Megiddo, N. (ed.) Progress in mathematical programming: interior-point algorithms and related methods, pp. 29–47. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Kojima, M.; Shindoh S.; Hara, S. 1997: Interior-point methods for the monotone semidefinite linear complementarity problems. SIAM J. Optim. 7, 86–125

    Article  MATH  MathSciNet  Google Scholar 

  • Lewis, A.S.; Overton, M.L. 1996: Eigenvalue optimization. Acta Numerica 5, 149–190

    Article  MathSciNet  Google Scholar 

  • Megiddo, N. 1989: Pathways to the optimal set in linear programming. In: Megiddo, N. (ed.) Progress in mathematical programming: interior-point algorithms and related methods, pp. 131–158. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Monteiro, R.D.C. 1997: Primal-dual path-following algorithms for semidefinite programming. SIAM J. Optimiz. 7, 663–678

    Article  MATH  MathSciNet  Google Scholar 

  • Nesterov, Yu.E.; Nemirovskii, A.S. 1994: Interior Point Polynomial Methods in Convex Programming: Theory and Applications. Philadelphia, PA: SIAM

    Google Scholar 

  • Ohsaki, M.; Fujisawa, K.; Katoh, N.; Kanno, Y. 1999: Semi-definite programming for topology optimization of trusses under multiple eigenvalue constraints. Comput. Meth. Appl. Mech. Engng. 180, 203–217

    Article  MATH  Google Scholar 

  • Vandenberghe, L.; Boyd, S. 1996: Semidefinite programming. SIAM Review 38, 49–95

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanno, Y., Ohsaki, M. & Katoh, N. Symmetricity of the solution of semidefinite programming. Struct Multidisc Optim 24, 225–232 (2002). https://doi.org/10.1007/s00158-002-0232-0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-002-0232-0

Key words

Navigation