[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Algorithm to Determine the Exact Solution to Polynomial Semi-Definite Problems: Application to Structural Optimization

  • Conference paper
  • First Online:
Advances in Nonlinear Dynamics

Part of the book series: NODYCON Conference Proceedings Series ((NCPS))

  • 1413 Accesses

Abstract

A novel technique is proposed to solve polynomial semi-definite programming problems. In particular, by coupling optimization techniques with algebraic geometry tools, it is shown how to determine closed-form solutions to this class of problems. The effectiveness of the proposed technique is validated via application to some optimum truss design problems involving constraints on the global stability of the structure and on the free vibration frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 239.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 299.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 299.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Possieri, M. Sassano, Automatica 74, 23 (2016)

    Article  Google Scholar 

  2. L. Menini, C. Possieri, A. Tornambe, IEEE Trans. Autom. Control 61(5), 1362 (2016)

    Article  Google Scholar 

  3. D.A. Cox, J.B. Little, D. O’Shea, Using Algebraic Geometry (Springer, Berlin, 1998)

    Book  Google Scholar 

  4. J.H. Van Lint, Introduction to Coding Theory, vol. 86 (Springer, New York, 2012)

    MATH  Google Scholar 

  5. D.E. Kirk, Optimal Control Theory: An Introduction (Courier Corporation, Honolulu, 2012)

    Google Scholar 

  6. Z. Szallasi, J. Stelling, V. Periwal, System Modeling in Cellular Biology (MIT Press, New York, 2006)

    Book  Google Scholar 

  7. Y.S. Abu-Mostafa, M. Magdon-Ismail, H.T. Lin, Learning from Data (AMLBook, New York, 2012)

    Google Scholar 

  8. M. Kočvara, Struct. Multidiscip. Optim. 23(3), 189 (2002)

    Article  Google Scholar 

  9. A. Wächter, L.T. Biegler, Math. Prog. 106(1), 25 (2006)

    Article  Google Scholar 

  10. I.S. Duff, ACM Trans. Math. Soft. 30(2), 118 (2004)

    Article  Google Scholar 

  11. D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms (Springer, Berlin, 2015)

    Book  Google Scholar 

  12. B. Sturmfels, Solving Systems of Polynomial Equations (American Mathematical Society, Providence, 2002)

    Book  Google Scholar 

  13. B.D.O. Anderson, R.W. Scott, Proc. IEEE 65(6), 849 (1977)

    Article  Google Scholar 

  14. L. Menini, C. Possieri, A. Tornambe, Asian J. Control 20(2), 1 (2018)

    Article  MathSciNet  Google Scholar 

  15. K. Kurdyka, P. Orro, S. Simon, et al., J. Differ. Geom. 56(1), 67 (2000)

    Article  Google Scholar 

  16. M.S. El Din, in International Symposium Symbolic Algebraic Computer (2008), pp. 71–78

    Google Scholar 

  17. F. Guo, M.S. El Din, L. Zhi, in International Symposium Symbolic Algebraic Computer (2010), pp. 107–114

    Google Scholar 

  18. Z. Jelonek, K. Kurdyka, Discrete Comput. Geom. 34(4), 659 (2005)

    Article  MathSciNet  Google Scholar 

  19. W. Karush, Minima of functions of several variables with inequalities as side conditions. Master’s thesis (University of Chicago, Chicago, 1939)

    Google Scholar 

  20. H.W. Kuhn, A.W. Tucker, in Proceedings Berkeley Symposium Mathematical Statistics and Probability (University California, Berkeley, 1951)

    Google Scholar 

  21. L. Menini, C. Possieri, A. Tornambe, IEEE Trans. Autom. Control 63(12), 4188 (2018)

    Article  Google Scholar 

  22. C. Possieri, M. Sassano, in 54th IEEE Conference Decision Control (2015), pp. 5197–5202

    Google Scholar 

  23. C.-J. Thore, fminsdp (2021) (https://www.mathworks.com/matlabcentral/fileexchange/43643-fminsdp), MATLAB Central File Exchange. Retrieved September 24, 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrado Possieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Menini, L., Possieri, C., Tornambe, A. (2022). An Algorithm to Determine the Exact Solution to Polynomial Semi-Definite Problems: Application to Structural Optimization. In: Lacarbonara, W., Balachandran, B., Leamy, M.J., Ma, J., Tenreiro Machado, J.A., Stepan, G. (eds) Advances in Nonlinear Dynamics. NODYCON Conference Proceedings Series. Springer, Cham. https://doi.org/10.1007/978-3-030-81162-4_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81162-4_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81161-7

  • Online ISBN: 978-3-030-81162-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics