[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Contextual-based top-down saliency feature weighting for target detection

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Target detection using attention models has recently become a major research topic in active vision. One of the major problems in this area of research is how to appropriately weight low-level features to get high quality top-down saliency maps that highlight target objects. Learning of such weights has previously been done using example images having similar feature distributions without considering contextual information. In this paper, we propose a model that we refer to as the top-down contextual weighting (TDCoW) that incorporates high-level knowledge of the gist context of images to apply appropriate weights to the features. The proposed model is tested on four challenging datasets, two for cricket balls, one for bikes and one for person detection. The obtained results show the effectiveness of contextual information for modelling the TD saliency by producing better feature weights than those produced without contextual information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Achanta, R., Susstrunk, S.: Saliency detection using maximum symmetric surround. In: IEEE International Conference on Image Processing 2010 (ICIP), pp. 2653–2656 (2010)

  2. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition 2009 (CVPR 09), pp. 1597–1604 (2009)

  3. Aytekin, C., Kiranyaz, S., Gabbouj, M.: Automatic object segmentation by quantum cuts. In: International Conference on Pattern Recognition 2014 (ICPR 2014), pp. 112–117 (2014)

  4. Benicasa, A.X., Quiles, M.G., Zhao, L., Romero, R.A.F.: Top-down biasing and modulation for object-based visual attention. In: International Conference on Neural Information Processing (ICONIP’13), pp. 325–332 (2013)

  5. Borji, A., Itti, L.: Scene classification with a sparse set of salient regions. In: IEEE International Conference on Robotics and Automation (ICRA 2011), pp. 1902–1908 (2011)

  6. Borji, A., Sihite, D.N., Itti, L.: Salient object detection: a benchmark. Eur. Conf. Computer Vision 2012, 414–429 (2012)

    Google Scholar 

  7. Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)

    Article  MathSciNet  Google Scholar 

  8. Cheng, M.M., Warrell, J., Lin, W.Y., Zheng, S., Vineet, V., Crook, N.: Efficient salient region detection with soft image abstraction. In: IEEE International Conference on Computer Vision 2013 (ICCV 13), pp. 1529–1536 (2013)

  9. Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H.S., Hu, S.M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)

    Article  Google Scholar 

  10. Duan, L., Wu, C., Miao, J., Qing, L., Fu, Y.: Visual saliency detection by spatially weighted dissimilarity. In: IEEE Conference on Computer Vision and Pattern Recognition 2011 (CVPR 11), pp. 473–480 (2011)

  11. Filipe, S., Alexandre, L.A.: From the human visual system to the computational models of visual attention: a survey. Artif. Intell. Rev. (2013)

  12. Fornoni, M., Caputo, B.: Indoor scene recognition using task and saliency-driven feature pooling. In: British Machine Vision Conference 2012 (BMVC 2012) (2012)

  13. Frintrop, S.: VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search. PhD thesis (2006)

  14. Gu, K., Tong, S.J., Zhai, G., Lin, W., Yang, X., Zhang, W.: Visual saliency detection with free energy theory. IEEE Signal Process. Lett. 22(10), 1552–1555 (2015)

    Article  Google Scholar 

  15. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Advances in Neural Information Processing Systems (NIPS), pp. 545–552 (2006)

  16. He, S., Han, J., Hu, X., Xu, M., Guo, L., Liu, T.: A biologically inspired computational model for image saliency detection. In: ACM International Conference on Multimedia 2011 (MM 11), pp. 1465–1468 (2011)

  17. Hu, Y., Xie, X., Ma, W.Y., Chia, L.T., Rajan, D.: Salient region detection using weighted feature maps based on the human visual attention model. In: Advances in Multimedia Information Processing (PCM 2004), pp. 993–1000 (2004)

  18. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  19. Jiang, P., Ling, H., Yu, J., Peng, J.: Salient region detection by UFO: uniqueness, focusness and objectness. In: IEEE International Conference on Computer Vision 2013 (ICCV 13), pp. 1976–1983 (2013)

  20. Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: IEEE International Conference on Computer Vision 2009 (ICCV 09), pp. 2106–2113 (2009)

  21. Kim, J., Han, D., Tai, Y.W., Kim, J.: Salient region detection via high-dimensional color transform. In: IEEE Conference on Computer Vision and Pattern Recognition 2014 (CVPR 14), pp. 883–890 (2014)

  22. Li, C., Yuan, Y., Cai, W., Xia, Y., Feng, D.: Robust saliency detection via regularized random walks ranking. In: IEEE Conference on Computer Vision and Pattern Recognition 2015 (CVPR 15), pp. 2710–2717 (2015a)

  23. Li, G., Shi, J., Luo, H., Tang, M.: A computational model of vision attention for inspection of surface quality in production line. Mach. Vision Appl. 24(4), 835–844 (2013)

    Article  Google Scholar 

  24. Li, H., Lu, H., Lin, Z., Shen, X., Price, B.: Inner and inter label propagation: salient object detection in the wild. IEEE Trans. Image Process. 24(10), 3176–3186 (2015b)

    Article  MathSciNet  Google Scholar 

  25. Li, Y., Hou, X., Koch, C., Rehg, J.M., Yuille, A.L.: The secrets of salient object segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition 2006 (CVPR 06), pp. 4321–4328 (2014)

  26. McMains, S., Kastner, S.: Interactions of top-down and bottom-up mechanisms in human visual cortex. J. Neurosci. 31(2), 587–597 (2011)

    Article  Google Scholar 

  27. McMains, S.A., Kastner, S.: Visual attention. Encyclopedia of Neuroscience, pp. 4296–4302 (2009)

  28. Mitri, S., Frintrop, S., Pervölz, K., Surmann, H., Nüchter, A.: Robust object detection at regions of interest with an application in ball recognition. In: IEEE International Conference on Robotics and Automation 2005 (ICRA 2005), pp. 125–130 (2005)

  29. Movahedi, V., Elder, J.H.: Design and perceptual validation of performance measures for salient object segmentation. In: IEEE Computer Society Workshop on Perceptual Organization in Computer Vision (POCV), pp. 49–56 (2010)

  30. Navalpakkam, V., Itti, L.: An integrated model of top-down and bottom-up attention for optimizing detection speed. In: IEEE Conference on Computer Vision and Pattern Recognition 2006 (CVPR 06), vol. 2, pp. 2049–2056 (2006)

  31. Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic object recognition with boosting. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 416–431 (2006)

    Article  MATH  Google Scholar 

  32. Qin, Y., Lu, H., Xu, Y., Wang, H.: Saliency detection via cellular automata. In: IEEE Conference on Computer Vision and Pattern Recognition 2015 (CVPR 15), pp. 110–119 (2015)

  33. Rahman, I.M.H., Hollitt, C., Zhang, M.: Information divergence based saliency detection with a global center-surround mechanism. In: International Conference on Pattern Recognition 2014 (ICPR 14), pp. 3428–3433 (2014)

  34. Rasolzadeh, B., Targhi, A.T., Eklundh, J.O.: An attentional system combining top-down and bottom-up influences. In: International Workshop on Attention in Cognitive Systems (WAPCV 2007), pp. 123–140 (2007)

  35. Riche, N., Mancas, M., Duvinage, M., Mibulumukin, M., Gosselin, B., Dutoit, T.: RARE2012: a multi-scale rarity-based saliency detection with its com parative statistical analysis. Signal Process. Image Commun. 28(6), 3114–3124 (2013)

    Article  Google Scholar 

  36. Rothkopf, C.A., Ballard, D.H., Hayhoe, M.M.: Task and context determine where you look. J. Vision 7(14), 1–20 (2007)

    Article  Google Scholar 

  37. Siagian, C., Itti, L.: Rapid biologically-inspired scene classification using features shared with visual attention. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 300–312 (2007)

    Article  Google Scholar 

  38. Spotorno, S., Malcolm, G.L., Tatler, B.W.: How context information and target information guide the eyes from the first epoch of search in real world scenes. J. Vision 14(2 (Article 7)), 1–21 (2014)

  39. Stas, G., Lihi, Z.M., Ayellet, T.: Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012)

    Article  Google Scholar 

  40. Tong, N., Lu, H., Ruan, X., Yang, M.H.: Salient Object Detection via Bootstrap Learning, pp. 1884–1892 (2015)

  41. Torralba, A., Olivia, A., Castelhano, M.S., Henderson, J.M.: Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol. Rev. 113(4), 766–786 (2006)

    Article  Google Scholar 

  42. Treisman, A., Gelade, G.: A feature integration theory of attention. Cogn. Psychol. 12, 97–136 (1980)

    Article  Google Scholar 

  43. Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. Int. J. Computer Vision 104(2), 154–171 (2013)

    Article  Google Scholar 

  44. Yang, C., Zhang, L., Lu, H., Yang, M.: Saliency detection via graph-based manifold ranking. In: IEEE Conference on Computer Vision and Pattern Recognition 2013 (CVPR 13), pp. 3166–3173 (2013)

  45. Zhang, L., Tong, M.H., Marks, T.K., Shan, H., Cottrell, G.W.: SUN: a bayesian framework for saliency using natural statistics. J. Vision 8(7 (Article 32)), 1–20 (2008)

  46. Zhaoping, L., Frith, U.: A clash of bottom-up and top-down processes in visual search: the reversed letter effect revisited. J. Exp. Psychol. Hum. Percept. Perform. 37(4), 997–1006 (2011)

    Article  Google Scholar 

  47. Zhaoping, L., Guyader, N.: Interference with bottom-up feature detection by higherlevel object recognition. Curr. Biol. 17, 26–31 (2007)

    Article  Google Scholar 

  48. Zhou, L., Zhou, Z., Hu, D.: Scene classification using a multi-resolution bag-of-features model. Pattern Recognit. 46(1), 424–433 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, I., Hollitt, C. & Zhang, M. Contextual-based top-down saliency feature weighting for target detection. Machine Vision and Applications 27, 893–914 (2016). https://doi.org/10.1007/s00138-016-0754-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-016-0754-x

Keywords

Navigation