[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Attentive Content-Based Image Retrieval

  • Chapter
  • First Online:
From Human Attention to Computational Attention

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 10))

  • 1785 Accesses

Abstract

In this chapter, we show how visual attention can enhance the performance in object recognition. This proposition is inspired by the idea introduced in Neisser (Cognitive psychology. Appleton-Century-Crofts, New York, 1967), which indicates that object recognition in human perception consists of two steps: an “attentional process selects the region of interest” and “complex object recognition processes are restricted to these regions”. Recently, in computer vision, much work has been done to combine the two domains of visual attention and object recognition, which we will call “attentive content-based image retrieval”. The test on our attentive CBIR approach in VOC 2005 demonstrated that we can maintain approximately the same recognition performance by selecting only 40 % of SIFT keypoints using classical saliency models. The proposed attentive CBIR framework can also be used to make a ranking between existing saliency models when used for CBIR. This ranking is different from the one using classical ground-truth like eye-tracking which means that choosing the best saliency models in predicting eye-tracking might be misleading when focusing on a CBIR application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    According to the Collins dictionary, the saliency is the quality of being prominent, conspicuous, or striking.

References

  1. Walther, D., Rutishauser, U., Koch, C., & Perona, P. (2005). Selective visual attention enables learning and recognition of multiple objects in cluttered scenes. Computer Vision and Image Understanding, 100(1–2), 41–63.

    Article  Google Scholar 

  2. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.

    Article  CAS  PubMed  Google Scholar 

  3. Itti, L., & Koch, C. (2001). Feature combination strategies for saliency-based visual attention systems. Journal of Electronic Imaging, 10, 161–169.

    Article  Google Scholar 

  4. Hubel, D. H., & Wiesel, T. N. (2004). Brain and visual perception: The story of a 25-year collaboration (Vol. 31). New York: Oxford University Press.

    Book  Google Scholar 

  5. Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 136(12), 97–136.

    Article  Google Scholar 

  6. Borji, A., & Itti, L. (2013). State-of-the-art in visual attention modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 185–207.

    Article  PubMed  Google Scholar 

  7. Tuytelaars, T., & Mikolajczyk, K. (2007). Local invariant feature detectors: A survey. Foundations and Trends in Computer Graphics and Vision, 3(3), 177–280.

    Article  Google Scholar 

  8. Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  9. Everingham, M., Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2009). The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 88(2), 303–338.

    Article  Google Scholar 

  10. Awad, D., Courboulay, V., & Revel, A. (2012). Saliency filtering of sift detectors: Application to cbir. Advanced concepts for intelligent vision systems, 350 (Vol. 7517 of LNCS, pp. 290–300). Berlin/New York: Springer.

    Google Scholar 

  11. Dave, A., Dubey, R., & Ghanem, B. (2012). Do humans fixate on interest points? In Pattern Recognition (ICPR) (pp. 2784–2787).

    Google Scholar 

  12. Foo, J. J. (2007). Pruning SIFT for scalable near-duplicate image matching. In Australasian Database Conference, Ballarat, p. 9.

    Google Scholar 

  13. Alhwarin, F., Ristić-Durrant, D., & Gräser, A. (2010). Vf-sift: Very fast sift feature matching. In Proceedings of the 32Nd DAGM Conference on Pattern Recognition (pp. 222–231). Berlin/Heidelberg: Springer.

    Google Scholar 

  14. Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4), 219–227.

    CAS  PubMed  Google Scholar 

  15. Itti, L., Koch, C., Niebur, E., & Others (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254–1259.

    Google Scholar 

  16. Le Meur, O., Le Callet, P., Barba, D., & Thoreau, D. (2006). A coherent computational approach to model bottom-up visual attention. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(5), 802–817.

    Article  PubMed  Google Scholar 

  17. Frintrop, S. (2005). VOCUS: A visual attention system for object detection and goal-directed search, Phd thesis, accepted at the University of Bonn in July 2005 (Lecture notes in artificial intelligence (LNAI), Vol. 3899/2006). Berlin/Heidelberg: Springer. ISBN: 3-540-32759-2.

    Google Scholar 

  18. Torralba, A. (2003). Modeling global scene factors in attention. Journal of the Optical Society of America A, 20(7), 1407–1418.

    Article  Google Scholar 

  19. Oliva, A., Torralba, A., Castelhano, M.S., & Henderson, J.M. (2003). Top-Down Control of Visual Attention in Object Detection, Proceedings of the IEEE International Conference on Image Processing. Vol. I, pages 253-256; September 14-17, in Barcelona, Spain.

    Google Scholar 

  20. Itti, L., & Baldi, P. (2009). Bayesian surprise attracts human attention. Vision Research, 49(10), 1295–1306.

    Article  PubMed  Google Scholar 

  21. Gao, D. G. D., Han, S. H. S., & Vasconcelos, N. (2009). Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(6), 989–1005.

    Article  PubMed  Google Scholar 

  22. Gu, E., Wang, J., & Badler, N. I. (2007). Generating sequence of eye fixations using decision-theoretic attention model. In Attention in Cognitive Systems. Theories and Systems from an Interdisciplinary Viewpoint (pp. 277–292). Berlin/Heidelberg: Springer.

    Google Scholar 

  23. Bruce, N., & Tsotsos, J. (2006). Saliency based on information maximization. Advances in Neural Information Processing Systems, (18), 155–162.

    Google Scholar 

  24. Salah, A. A., Alpaydin, E., & Akarun, L. (2002). A selective attention-based method for visual pattern recognition with application to handwritten digit recognition and face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 420–425

    Article  Google Scholar 

  25. Rao, R. P. N. (2005). Bayesian inference and attentional modulation in the visual cortex. NeuroReport, 16(16), 1843–1848.

    Article  PubMed  Google Scholar 

  26. Liu, Y. J., Luo, X., Xuan, Y. M., Chen, W. F., & Fu, X. L. (2011). Image retargeting quality assessment. EUROGRAPHICS, 30(2).

    Google Scholar 

  27. Hou, X., & Zhang, L. (2007). Saliency detection: A spectral residual approach. 2007 IEEE Conference on Computer Vision and Pattern Recognition, 1(800), 1–8.

    Google Scholar 

  28. Peters, R. J., & Itti, L. (2007). Beyond bottom-up: Incorporating task-dependent influences into a computational model of spatial attention. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis (pp. 1–8).

    Google Scholar 

  29. Kienzle, W., Franz, M. O., Schölkopf, B., & Wichmann, F. A. (2009). Center-surround patterns emerge as optimal predictors for human saccade targets. Journal of Vision, 9(5), 7.1–15.

    Article  Google Scholar 

  30. Ramström, O., & Christensen, H. I. (2002). Visual attention using game theory. In Proceedings of the Second International Workshop on Biologically Motivated Computer Vision (BMCV’02), London (pp. 462–471). Springer.

    Google Scholar 

  31. Perreira Da Silva, M., Courboulay, V., & Estraillier, P. (2011). Objective validation of a dynamical and plausible computational model of visual attention. In IEEE European Workshop on Visual Information Processing, Paris (pp. 223–228).

    Google Scholar 

  32. Riche, N., Duvinage, M., Mancas, M., Gosselin, B., & Dutoit, T. (2013). Saliency and human fixations: State-of-the-art and study of comparison metrics. Proceedings of IEEE 13th International Conference on Computer Vision (pp. 1153–1160). Sydney, Australia.

    Google Scholar 

  33. Perreira Da Silva, M., Courboulay, V., Prigent, A., & Estraillier, P. (2010). Evaluation of preys/predators systems for visual attention simulation. In VISAPP 2010 – International Conference on Computer Vision Theory and Applications, Angers (pp. 275–282). INSTICC.

    Google Scholar 

  34. Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.

    Google Scholar 

  35. Frintrop, S., & Jensfelt, P. (2008). Attentional landmarks and active gaze control for visual slam. IEEE Transactions on Robotics, 24(5), 1054–1065.

    Article  Google Scholar 

  36. Frintrop, S. (2011). Towards attentive robots. Paladyn. Journal of Behavioral Robotics, 2, 64–70. doi:10.2478/s13230-011-0018-4.

    Article  Google Scholar 

  37. Treisman, A., & Gormican, S. (1988). Feature analysis in early vision: Evidence from search asymmetries. Psychological Review, 95(1), 15–48.

    Article  CAS  PubMed  Google Scholar 

  38. Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202–238.

    Article  CAS  Google Scholar 

  39. Perreira Da Silva, M., Courboulay, V., Prigent, A., & Estraillier, P. (2010). Evaluation of preys/predators systems for visual attention simulation. In P. Richard & J. Braz (Eds.), VISAPP 2010 – International Conference on Computer Vision Theory and Applications, Angers (Vol. 2, pp. 275–282). INSTICC.

    Google Scholar 

  40. Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2010). The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88(2), 303–338.

    Article  Google Scholar 

  41. Sivic, J., Russell, B.C, Efros, A. A, Zisserman, A., & Freeman, W. T. (2005). Discovering objects and their location in images. In Proceedings of IEEE International Conference on Computer Vision ICCV, Beijing.

    Google Scholar 

  42. Kondor, R., & Jebara, T. (2003). A kernel between sets of vectors. In Machine Learning: Tenth International Conference, Washington, DC.

    Google Scholar 

  43. Laaksonen, J. (2000). PicSOM – content-based image retrieval with self-organizing maps. Pattern Recognition Letters, 21(13–14), 1199–1207.

    Article  Google Scholar 

  44. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.

    Article  Google Scholar 

  45. Mikolajczyk, K. (2004). Scale & affine invariant interest point detectors. International Journal of Computer Vision, 60(1), 63–86.

    Article  Google Scholar 

  46. Lindeberg, T. (1998). Feature detection with automatic scale selection. Computer Vision, 30(2), 96.

    Google Scholar 

  47. Awad, D., Mancas, M., Riche, N., Courboulay, V., & Revel, A. (2015). A cbir-based evaluations framework for visual attention models. In 23rd European Signal Processing Conference (EUSIPCO), Nice.

    Google Scholar 

  48. Koch, C., Harel, J., & Perona, P. (2006). Graph-based visual saliency. In Proceedings of Advances in neural information processing systems (NIPS), Vancouver.

    Google Scholar 

  49. Seo, H. J., & Milanfar, P. (2009). Static and spacetime visual saliency detection by self-resemblance. Journal of Vision, 9(12), 1–27.

    Article  PubMed  Google Scholar 

  50. Murray, N., Vanrell, M., Otazu, X., & Alejandro Parraga, C. (2011). Saliency estimation using a nonparametric low-level vision model. In Computer Vision and Pattern Recognition (CVPR), Colorado Springs (pp. 433–440).

    Google Scholar 

  51. Riche, N., Mancas, M., Gosselin, B., & Dutoit, T. (2012). Rare: A new bottom-up saliency model. In Proceedings of the IEEE International Conference of Image Processing (ICIP), Lake Buena Vista.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dounia Awad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Awad, D., Courboulay, V., Revel, A. (2016). Attentive Content-Based Image Retrieval. In: Mancas, M., Ferrera, V., Riche, N., Taylor, J. (eds) From Human Attention to Computational Attention. Springer Series in Cognitive and Neural Systems, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3435-5_19

Download citation

Publish with us

Policies and ethics