Abstract
The quantitative evaluation of image segmentation is an important and difficult task that is required for making a decision on the choice of a segmentation method and for the optimal tuning of its parameter values. To perform this quantitative evaluation, dissimilarity criteria are relevant with respect to the human visual perception, contrary to metrics that have been shown to be visually not adapted. This article proposes to compare eleven dissimilarity criteria together. The field of retina vessels image segmentation is taken as an application issue to emphasize the comparison of five specific image segmentation methods, with regard to their degrees of consistency and discriminancy. The DRIVE and STARE databases of retina images are employed and the manual/visual segmentations are used as a reference and as a control method. The so-called \(\epsilon \) criterion gives results in agreement with perceptually based criterions for achieving the quantitative comparison.
Similar content being viewed by others
References
Abdou, I., Pratt, W.: Qualitative design and evaluation of enhancement/thresholding edge detector. Proc. IEEE. 67(5), 753–763 (1979)
Cardoso, J., Corte-Real, L.: Toward a generic evaluation of image segmentation. IEEE Trans. Image Process. 14(11), 1773–1782 (2005). doi:10.1109/TIP.2005.854491
Chalana, V., Kim, Y.: A methodology for evaluation of boundary detection algorithms on medical images. IEEE Trans. Med. Imaging 16(5), 642–652 (1997)
Chanwimaluang, T., Fan, G., Fransen, S.R.: Hybrid retinal image registration. IEEE Trans. Inf. Technol. Biomed. 10(1), 129–142 (2006)
Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging 8(3), 263–269 (1989). doi:10.1109/42.34715
Deza, M.M., Deza, E.: Dictionary of Distances. Elsevier, Amsterdam (2006)
Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)
Fix, E., Hodges, J.: Discriminatory analysis. nonparametric discrimination: consistency properties. International Statistical Review/Revue Internationale de Statistique 57(3), 238–247 (1989). http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA800276
García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sci. 180(10), 2044–2064 (2010)
Gavet, Y.: Perception visuelle humaine, complétion des mosaïques et application à la reconstruction d’images de l’endothélium cornéen humain en microscopie optique spéculaire. Ph.D. thesis, École Nationale Supérieure des Mines de Saint-Etienne (2008)
Gavet, Y., Pinoli, J.C.: A geometric dissimilarity criterion between jordan spatial mosaics. Theoretical aspects and application to segmentation evaluation. J. Math. Imaging Vis. 42, 25–49 (2012). doi:10.1007/s10851-011-0272-4
Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)
Huang, J., Ling, C.: Using auc and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 17(3), 299–310 (2005)
Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)
Jiang, X., Marti, C., Irniger, C., Bunke, H.: Distance measures for image segmentation evaluation. EURASIP J. Appl. Signal Process. 2006, 1–10 (2006). doi:10.1155/ASP/2006/35909
Marin, D., Aquino, A., Gegundez-Arias, M., Bravo, J.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30(1), 146–158 (2011)
Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W. H. Freeman and Company, New York (1982)
McGuinness, K., O’Connor, N.E.: A comparative evaluation of interactive segmentation algorithms. Pattern Recognit. 43(2), 434–444 (2010). doi:10.1016/j.patcog.2009.03.008. URL http://www.sciencedirect.com/science/article/B6V14-4VTVPT9-1/2/863e9be0e8f651f41146ef73f2898e0c. Interactive Imaging and Vision
Mendonça, A., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25(9), 1200–1213 (2006). doi:10.1109/TMI.2006.879955
Minkowski, H.: Volumen und Oberfläche. Mathematische Annalen 57, 447–495 (1903)
Philipp-Foliguet, S., Guigues, L.: Évaluation de la segmentation d’images: état de l’art, nouveaux indices et comparaison. Traitement du signal 23(2), 109–124 (2006)
Pont-Tuset, J., Marques, F.: Measures and meta-measures for the supervised evaluation of image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2131–2138 (2013)
Soares, J., Leandro, J., Cesar, R., Jelinek, H., Cree, M.: Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25(9), 1214–1222 (2006). doi:10.1109/TMI.2006.879967
Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004). doi:10.1109/TMI.2004.825627
Strasters, K.C., Gerbrands, J.J.: Three-dimensional image segmentation using a split, merge and group approach. Pattern Recognit. Lett. 12(5), 307–325 (1991)
Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327–352 (1977)
Tversky, A., Gati, I.: Similarity, separability and the triangle inequality. Psychol. Rev. 89, 123–154 (1982)
Unnikrishnan, R., Pantofaru, C., Hebert, M.: Toward objective evaluation of image segmentation algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 929–944 (2007)
Villegas, P., Marichal, X.: Perceptually-weighted evaluation criteria for segmentation masks in video sequences. IEEE Trans. Image Process. 13(8), 1092–1103 (2004). doi:10.1109/TIP.2004.828433
Zhang, Y.J.: A survey on evaluation methods for image segmentation. Pattern Recognit. 29(8), 1335–1346 (1996)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gavet, Y., Fernandes, M., Debayle, J. et al. Dissimilarity criteria and their comparison for quantitative evaluation of image segmentation: application to human retina vessels. Machine Vision and Applications 25, 1953–1966 (2014). https://doi.org/10.1007/s00138-014-0625-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-014-0625-2