Abstract
An image segmentation process often results in a special spatial set, called a mosaic, as the subdivision of a domain S within the n-dimensional Euclidean space. In this paper, S will be a compact domain and the study will be focused on finite Jordan mosaics, that is to say mosaics with a finite number of regions and where the boundary of each region is a Jordan hypersurface.
The first part of this paper addresses the problem of comparing a Jordan mosaic to a given reference Jordan mosaic and introduces the ε dissimilarity criterion. The second part will show that the ε dissimilarity criterion can be used to perform the evaluation of image segmentation processes. It will be compared to classical criterions in regard to several geometric transformations. The pros and cons of these criterions are presented and discussed, showing that the ε dissimilarity criterion outperforms the other ones.
Similar content being viewed by others
References
Abdou, I., Pratt, W.: Qualitative design and evaluation of enhancement/thresholding edge detector. Proc. IEEE 67(5), 753–763 (1979)
Ambrosio, L., Colesanti, A., Villa, E.: Outer Minkowski content for some classes of closed sets. Math. Ann. 342(4), 727–748 (2008)
Baddeley, A.J.: An error metric for binary images. In: Förstner, W., Ruwiedel, H. (eds.) Robust Computer Vision: Quality of Vision Algorithms, pp. 59–78. Wichmann, Karlsruhe (1992)
Basseville, M.: Distance measures for signal processing and pattern recognition. Signal Process. 18(4), 349–369 (1989). doi:10.1016/0165-1684(89)90079-0
Baudrier, E., Millon, G., Nicolier, F., Ruan, S.: Binary-image comparison with local-dissimilarity quantification. Pattern Recognit. 41(5), 1461–1478 (2008)
Belaroussi, B., Benoit-Cattin, H., Odet, C.: Scalable discrepancy measures for segmentation evaluation. In: ICIP (1), pp. 785–788 (2002)
Beucher, S., Lantuejoul, C.: Use of watersheds in contour detection. In: International Workshop on Image Processing: Real-time Edge and Motion Detection/Estimation, Rennes, France (1979)
Brouwer, L.E.J.: Beweis des jordanschen satzes für n-dimensionen. Math. Ann. 71, 314–319 (1911)
Capasso, V., Micheletti, A.: Stochastic geometry and related statistical problems in biomedicine. In: Complex Systems in Biomedicine, pp. 35–69. Springer, Milan (2006). doi:10.1007/88-470-0396-2_2
Chabrier, S., Laurent, H., Rosenberger, C., Emile, B.: Comparative study of contour detection evaluation criteria based on dissimilarity measures. J. Image Video Process 2008(2), 1–13 (2008). doi:10.1155/2008/693053
Cárdenes, R., de Luis-García, R., Bach-Cuadra, M.: A multidimensional segmentation evaluation for medical image data. Comput. Methods Programs Biomed. 96(2), 108–124 (2009). doi:10.1016/j.cmpb.2009.04.009
Debayle, J., Gavet, Y., Pinoli, J.C.: Image restoration and enhancement. In: General Adaptive Neighborhood Image Restoration, Enhancement and Segmentation. LNCS: Image Analysis and Recognition, vol. 4141, pp. 29–40. Springer, Berlin (2006). doi:10.1007/11867586_3
Deza, M.M., Deza, E.: Dictionary of Distances. Elsevier, Amsterdam (2006)
Dirichlet, G.: Über die reduktion der positiven quadratischen formen mit drei unbestimmten ganzen zahlen. J. Reine Angew. Math. 40, 209–227 (1850)
Federer, H.: Geometric Measure Theory. Springer, Berlin (1969)
Fu, J.H.G.: Tubular neighborhoods in Euclidean spaces. Duke Math. J. 52, 1025–1046 (1985). doi:10.1215/S0012-7094-85-05254-8
Gavet, Y., Pinoli, J.C.: Visual perception based automatic recognition of cell mosaics in human corneal endothelium microscopy images. Image Anal. Stereol. 27, 53–61 (2008)
Hausdorff, F.: Grundzuege der Mengenlehre. Viet, Leipzig (1914)
Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bull. Soc. Vaudoise Sci. Nat. 37, 547–579 (1901)
Kerautret, B., Lachaud, J.O.: Multi-scale analysis of discrete contours for unsupervised noise detection. In: IWCIA, pp. 187–200 (2009)
Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Mateo (2004)
Lebesgue, H.L.: Sur la mesure des grandeurs. L’enseignement Mathématique (1935)
Marczewski, F., Steinhaus, H.: On a certain distance of sets and the corresponding distance of functions. In: Colloquim Mathematicum, vol. 6, pp. 319–327 (1958)
Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. B, Biol. Sci. 207(1167), 187–217 (1980)
Martin, D.R.: An empirical approach to grouping and segmentation. Ph.D. thesis, EECS Department, University of California, Berkeley (2003)
Michel, O., Baraniuk, R., Flandrin, P.: Time-frequency based distance and divergence measures. In: Time-Frequency and Time-Scale Analysis, Proceedings of the IEEE-SP International Symposium on, pp. 64–67 (1994). doi:10.1109/TFSA.1994.467363
Micheletti, A., Capasso, V.: The stochastic geometry of polymer crystallization processes. Stoch. Anal. Appl. 15(3), 355–373 (1997). doi:10.1080/07362999708809481
Minkowski, H.: Volumen und Oberfläche. Math. Ann. 57, 447–495 (1903)
Morgan, F.: Geometric Measure Theory. Academic Press, San Diego (1995)
Nguyen, T.P., Debled-Rennesson, I.: Curvature estimation in noisy curves. In: CAIP, pp. 474–481 (2007)
Nikodým, O.M.: Sur une généralisation des intégrales de M. J. Radon. Fundam. Math. 15, 131–179 (1930)
Okabe, A., Boots, B., Sugihara, K.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York (1992)
Philipp-Foliguet, S., Guigues, L.: Évaluation de la segmentation d’images: état de l’art, nouveaux indices et comparaison. Trait. signal 23(2), 109–124 (2006)
Pompeiu, D.: Sur la continuité des fonctions de variables complexes (thèse). Ann. Fac. Sci. Toulouse Sér. 2 7, 265–315 (1905)
Román-Roldán, R., Gómez-Lopera, J.F., Atae-Allah, C., Martínez-Aroza, J., Luque-Escamilla, P.L.: A measure of quality for evaluating methods of segmentation and edge detection. Pattern Recognit. 34(5), 969–980 (2001)
Rosin, J., West, G.: Segmentation of edges into lines and arcs. Image Vis. Comput. 7(2), 109–114 (1989)
Santini, S., Jain, R.: Similarity is a geometer. Multimed. Tools Appl. 5(3), 277–306 (1997)
Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications. Wiley, New York (1995)
Strasters, K.C., Gerbrands, J.J.: Three-dimensional image segmentation using a split, merge and group approach. Pattern Recognit. Lett. 12(5), 307–325 (1991)
Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327–352 (1977)
Tversky, A., Gati, I.: Similarity, separability and the triangle inequality. Psychol. Rev. 89, 123–154 (1982)
Veltkamp, R.: Shape matching: similarity measures and algorithms. In: Shape Modeling and Applications, SMI 2001 International Conference on, pp. 188–197 (2001)
Veltkamp, R.C., Hagedoorn, M.: Shape similarity measures, properties and constructions. In: VISUAL ’00: Proceedings of the 4th International Conference on Advances in Visual Information Systems. LNCS, vol. 1929, pp. 467–476. Springer, London (2000)
Villa, E.: On the outer Minkowski content of sets. Ann. Mat. Pura Appl. 188, 619–630 (2008). doi:10.1007/s10231-008-0093-2
Voronoi, G.: Nouvelles applications des parametres continus a la theorie des formes quadratiques. Premier mémoire: sur quelques propriétés des formes quadratiques positives parfaites. J. Reine Angew. Math. 133, 97–178 (1907)
Voronoi, G.: Nouvelles applications des parametres continus a la theorie des formes quadratiques. Deuxième mémoire: Recherches sur les parallélloèdres primitives. J. Reine Angew. Math. 134, 198–287 (1908)
Voronoi, G.: Nouvelles applications des parametres continus a la theorie des formes quadratiques. Deuxième mémoire: Recherches sur les parallélloèdres primitifs, seconde partie: Domaines de formes quadratiques correspondent aux différents types de parallélloèdres primitives. J. Reine Angew. Math. 136, 67–181 (1909)
Yasnoff, W.A., Mui, J.K., Bacus, J.W.: Error measures for scene segmentation. Pattern Recognit. 9(4), 217–231 (1977). doi:10.1016/0031-3203(77)90006-1
Zhang, H., Fritts, J.E., Goldman, S.A.: Image segmentation evaluation: A survey of unsupervised methods. Comput. Vis. Image Underst. 110(2), 260–280 (2008)
Zhang, Y.J.: A survey on evaluation methods for image segmentation. Pattern Recognit. 29(8), 1335–1346 (1996)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gavet, Y., Pinoli, JC. A Geometric Dissimilarity Criterion Between Jordan Spatial Mosaics. Theoretical Aspects and Application to Segmentation Evaluation. J Math Imaging Vis 42, 25–49 (2012). https://doi.org/10.1007/s10851-011-0272-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-011-0272-4