[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Geometric Dissimilarity Criterion Between Jordan Spatial Mosaics. Theoretical Aspects and Application to Segmentation Evaluation

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

An image segmentation process often results in a special spatial set, called a mosaic, as the subdivision of a domain S within the n-dimensional Euclidean space. In this paper, S will be a compact domain and the study will be focused on finite Jordan mosaics, that is to say mosaics with a finite number of regions and where the boundary of each region is a Jordan hypersurface.

The first part of this paper addresses the problem of comparing a Jordan mosaic to a given reference Jordan mosaic and introduces the ε dissimilarity criterion. The second part will show that the ε dissimilarity criterion can be used to perform the evaluation of image segmentation processes. It will be compared to classical criterions in regard to several geometric transformations. The pros and cons of these criterions are presented and discussed, showing that the ε dissimilarity criterion outperforms the other ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdou, I., Pratt, W.: Qualitative design and evaluation of enhancement/thresholding edge detector. Proc. IEEE 67(5), 753–763 (1979)

    Article  Google Scholar 

  2. Ambrosio, L., Colesanti, A., Villa, E.: Outer Minkowski content for some classes of closed sets. Math. Ann. 342(4), 727–748 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baddeley, A.J.: An error metric for binary images. In: Förstner, W., Ruwiedel, H. (eds.) Robust Computer Vision: Quality of Vision Algorithms, pp. 59–78. Wichmann, Karlsruhe (1992)

    Google Scholar 

  4. Basseville, M.: Distance measures for signal processing and pattern recognition. Signal Process. 18(4), 349–369 (1989). doi:10.1016/0165-1684(89)90079-0

    Article  MathSciNet  Google Scholar 

  5. Baudrier, E., Millon, G., Nicolier, F., Ruan, S.: Binary-image comparison with local-dissimilarity quantification. Pattern Recognit. 41(5), 1461–1478 (2008)

    Article  MATH  Google Scholar 

  6. Belaroussi, B., Benoit-Cattin, H., Odet, C.: Scalable discrepancy measures for segmentation evaluation. In: ICIP (1), pp. 785–788 (2002)

    Google Scholar 

  7. Beucher, S., Lantuejoul, C.: Use of watersheds in contour detection. In: International Workshop on Image Processing: Real-time Edge and Motion Detection/Estimation, Rennes, France (1979)

    Google Scholar 

  8. Brouwer, L.E.J.: Beweis des jordanschen satzes für n-dimensionen. Math. Ann. 71, 314–319 (1911)

    Article  MathSciNet  Google Scholar 

  9. Capasso, V., Micheletti, A.: Stochastic geometry and related statistical problems in biomedicine. In: Complex Systems in Biomedicine, pp. 35–69. Springer, Milan (2006). doi:10.1007/88-470-0396-2_2

    Chapter  Google Scholar 

  10. Chabrier, S., Laurent, H., Rosenberger, C., Emile, B.: Comparative study of contour detection evaluation criteria based on dissimilarity measures. J. Image Video Process 2008(2), 1–13 (2008). doi:10.1155/2008/693053

    Google Scholar 

  11. Cárdenes, R., de Luis-García, R., Bach-Cuadra, M.: A multidimensional segmentation evaluation for medical image data. Comput. Methods Programs Biomed. 96(2), 108–124 (2009). doi:10.1016/j.cmpb.2009.04.009

    Article  Google Scholar 

  12. Debayle, J., Gavet, Y., Pinoli, J.C.: Image restoration and enhancement. In: General Adaptive Neighborhood Image Restoration, Enhancement and Segmentation. LNCS: Image Analysis and Recognition, vol. 4141, pp. 29–40. Springer, Berlin (2006). doi:10.1007/11867586_3

    Google Scholar 

  13. Deza, M.M., Deza, E.: Dictionary of Distances. Elsevier, Amsterdam (2006)

    Google Scholar 

  14. Dirichlet, G.: Über die reduktion der positiven quadratischen formen mit drei unbestimmten ganzen zahlen. J. Reine Angew. Math. 40, 209–227 (1850)

    Article  MATH  Google Scholar 

  15. Federer, H.: Geometric Measure Theory. Springer, Berlin (1969)

    MATH  Google Scholar 

  16. Fu, J.H.G.: Tubular neighborhoods in Euclidean spaces. Duke Math. J. 52, 1025–1046 (1985). doi:10.1215/S0012-7094-85-05254-8

    Article  MATH  MathSciNet  Google Scholar 

  17. Gavet, Y., Pinoli, J.C.: Visual perception based automatic recognition of cell mosaics in human corneal endothelium microscopy images. Image Anal. Stereol. 27, 53–61 (2008)

    Article  Google Scholar 

  18. Hausdorff, F.: Grundzuege der Mengenlehre. Viet, Leipzig (1914)

    MATH  Google Scholar 

  19. Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bull. Soc. Vaudoise Sci. Nat. 37, 547–579 (1901)

    Google Scholar 

  20. Kerautret, B., Lachaud, J.O.: Multi-scale analysis of discrete contours for unsupervised noise detection. In: IWCIA, pp. 187–200 (2009)

    Google Scholar 

  21. Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Mateo (2004)

    MATH  Google Scholar 

  22. Lebesgue, H.L.: Sur la mesure des grandeurs. L’enseignement Mathématique (1935)

  23. Marczewski, F., Steinhaus, H.: On a certain distance of sets and the corresponding distance of functions. In: Colloquim Mathematicum, vol. 6, pp. 319–327 (1958)

    Google Scholar 

  24. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. B, Biol. Sci. 207(1167), 187–217 (1980)

    Article  Google Scholar 

  25. Martin, D.R.: An empirical approach to grouping and segmentation. Ph.D. thesis, EECS Department, University of California, Berkeley (2003)

  26. Michel, O., Baraniuk, R., Flandrin, P.: Time-frequency based distance and divergence measures. In: Time-Frequency and Time-Scale Analysis, Proceedings of the IEEE-SP International Symposium on, pp. 64–67 (1994). doi:10.1109/TFSA.1994.467363

    Google Scholar 

  27. Micheletti, A., Capasso, V.: The stochastic geometry of polymer crystallization processes. Stoch. Anal. Appl. 15(3), 355–373 (1997). doi:10.1080/07362999708809481

    Article  MATH  MathSciNet  Google Scholar 

  28. Minkowski, H.: Volumen und Oberfläche. Math. Ann. 57, 447–495 (1903)

    Article  MATH  MathSciNet  Google Scholar 

  29. Morgan, F.: Geometric Measure Theory. Academic Press, San Diego (1995)

    MATH  Google Scholar 

  30. Nguyen, T.P., Debled-Rennesson, I.: Curvature estimation in noisy curves. In: CAIP, pp. 474–481 (2007)

    Google Scholar 

  31. Nikodým, O.M.: Sur une généralisation des intégrales de M. J. Radon. Fundam. Math. 15, 131–179 (1930)

    MATH  Google Scholar 

  32. Okabe, A., Boots, B., Sugihara, K.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York (1992)

    MATH  Google Scholar 

  33. Philipp-Foliguet, S., Guigues, L.: Évaluation de la segmentation d’images: état de l’art, nouveaux indices et comparaison. Trait. signal 23(2), 109–124 (2006)

    MATH  Google Scholar 

  34. Pompeiu, D.: Sur la continuité des fonctions de variables complexes (thèse). Ann. Fac. Sci. Toulouse Sér. 2 7, 265–315 (1905)

    Article  MathSciNet  Google Scholar 

  35. Román-Roldán, R., Gómez-Lopera, J.F., Atae-Allah, C., Martínez-Aroza, J., Luque-Escamilla, P.L.: A measure of quality for evaluating methods of segmentation and edge detection. Pattern Recognit. 34(5), 969–980 (2001)

    Article  MATH  Google Scholar 

  36. Rosin, J., West, G.: Segmentation of edges into lines and arcs. Image Vis. Comput. 7(2), 109–114 (1989)

    Article  Google Scholar 

  37. Santini, S., Jain, R.: Similarity is a geometer. Multimed. Tools Appl. 5(3), 277–306 (1997)

    Article  Google Scholar 

  38. Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications. Wiley, New York (1995)

    MATH  Google Scholar 

  39. Strasters, K.C., Gerbrands, J.J.: Three-dimensional image segmentation using a split, merge and group approach. Pattern Recognit. Lett. 12(5), 307–325 (1991)

    Article  Google Scholar 

  40. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327–352 (1977)

    Article  Google Scholar 

  41. Tversky, A., Gati, I.: Similarity, separability and the triangle inequality. Psychol. Rev. 89, 123–154 (1982)

    Article  Google Scholar 

  42. Veltkamp, R.: Shape matching: similarity measures and algorithms. In: Shape Modeling and Applications, SMI 2001 International Conference on, pp. 188–197 (2001)

    Google Scholar 

  43. Veltkamp, R.C., Hagedoorn, M.: Shape similarity measures, properties and constructions. In: VISUAL ’00: Proceedings of the 4th International Conference on Advances in Visual Information Systems. LNCS, vol. 1929, pp. 467–476. Springer, London (2000)

    Google Scholar 

  44. Villa, E.: On the outer Minkowski content of sets. Ann. Mat. Pura Appl. 188, 619–630 (2008). doi:10.1007/s10231-008-0093-2

    Article  MathSciNet  Google Scholar 

  45. Voronoi, G.: Nouvelles applications des parametres continus a la theorie des formes quadratiques. Premier mémoire: sur quelques propriétés des formes quadratiques positives parfaites. J. Reine Angew. Math. 133, 97–178 (1907)

    Google Scholar 

  46. Voronoi, G.: Nouvelles applications des parametres continus a la theorie des formes quadratiques. Deuxième mémoire: Recherches sur les parallélloèdres primitives. J. Reine Angew. Math. 134, 198–287 (1908)

    Article  MATH  Google Scholar 

  47. Voronoi, G.: Nouvelles applications des parametres continus a la theorie des formes quadratiques. Deuxième mémoire: Recherches sur les parallélloèdres primitifs, seconde partie: Domaines de formes quadratiques correspondent aux différents types de parallélloèdres primitives. J. Reine Angew. Math. 136, 67–181 (1909)

    Article  MATH  Google Scholar 

  48. Yasnoff, W.A., Mui, J.K., Bacus, J.W.: Error measures for scene segmentation. Pattern Recognit. 9(4), 217–231 (1977). doi:10.1016/0031-3203(77)90006-1

    Article  Google Scholar 

  49. Zhang, H., Fritts, J.E., Goldman, S.A.: Image segmentation evaluation: A survey of unsupervised methods. Comput. Vis. Image Underst. 110(2), 260–280 (2008)

    Article  Google Scholar 

  50. Zhang, Y.J.: A survey on evaluation methods for image segmentation. Pattern Recognit. 29(8), 1335–1346 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Gavet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavet, Y., Pinoli, JC. A Geometric Dissimilarity Criterion Between Jordan Spatial Mosaics. Theoretical Aspects and Application to Segmentation Evaluation. J Math Imaging Vis 42, 25–49 (2012). https://doi.org/10.1007/s10851-011-0272-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-011-0272-4

Keywords

Navigation