[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Finite-Time Synchronization of Coupled Markovian Discontinuous Neural Networks with Mixed Delays

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper is concerned with finite-time synchronization in an array of coupled neural networks with discontinuous activation functions, Markovian jumping parameters, as well as discrete and infinite-time distributed delays (mixed delays) under the framework of Filippov solution. Based on novel Lyapunov–Krasovskii functionals and analytical techniques and M-matrix method, the difficulties caused by the uncertainties of Filippov solutions, time delays, as well as Markov chain are overcome. Several sufficient conditions are obtained to guarantee the synchronization in finite time. Different from existing results on finite-time synchronization of non-delayed systems, the settling time for time-delay systems is dependent not only on the values of the error state at time zero, but also on the histories of the error state, the time delays, and the initial value of Markov chain. Moreover, finite-time synchronization of the coupled neural networks with nonidentical uncertain perturbations is also considered. The obtained results are also applicable to continuous nonlinear systems, which essentially extend existing results which can only finite-timely synchronize or stabilize non-delayed systems. Finally, numerical examples are given demonstrate the effectiveness of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.P. Aghababa, H.P. Aghababa, Synchronization of mechanical horizontal platform systems in finite time. Appl. Math. Model. 36(10), 4579–4591 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. J.P. Aubin, A. Cellina, Differential Inclusions (Sprigner, Berlin, 1984)

    Book  MATH  Google Scholar 

  3. C.A.S. Batista, S.R. Lopes, R.L. Viana, A.M. Batista, \(H_{\infty }\) delayed feedback control of bursting synchronization in a scale-free neuronal network. Neural Networks 23(1), 114–124 (2010)

    Article  Google Scholar 

  4. C. Chang, K. Fan, I. Chung, C. Lin, A recurrent fuzzy coupled cellular neural network system with automatic structure and template learning. IEEE Trans. Circuits Syst. Express Briefs 53(8), 602–606 (2006)

    Article  Google Scholar 

  5. M. Chen, L. Zhang, H. Su, C. Li, Event-based synchronisation of linear discrete-time dynamical networks. IET Control Theory Appl. 9(5), 755–765 (2015)

    Article  MathSciNet  Google Scholar 

  6. F.H. Clarke, Optimization and Nonsmooth Analysis, vol. 5 (Society for Industrial Mathematics, Philadelphia, 1987)

    MATH  Google Scholar 

  7. M.H.A. Davis, Markov Models and Optimization, vol. 49 (Chapman & Hall/CRC, Boca Raton, 1993)

    Book  MATH  Google Scholar 

  8. C. Edwards, S. Spurgeon, R. Patton, Sliding mode observers for fault detection and isolation. Automatica 36, 541–548 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Efimov, A. Polyakov, E. Fridman, W. Perruquetti, J.-P. Richard, Comments on finite-time stability of time-delay systems. Automatica 50, 1944–1947 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. A.F. Filippov, Differential equations with discontinuous right-hand side. Matematicheskii Sbornik 93(1), 99–128 (1960)

    MathSciNet  MATH  Google Scholar 

  11. M. Forti, M. Grazzini, P. Nistri, L. Pancioni, Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations. Phys. D 214(1), 88–99 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Forti, P. Nistri, Global convergence of neural networks with discontinuous neuron activations. IEEE Trans. Circuit Syst. I 50(11), 1421–1435 (2003)

    Article  MathSciNet  Google Scholar 

  13. M. Forti, P. Nistri, D. Papini, Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain. IEEE Trans. Neural Netw. 16(6), 1449–1463 (2005)

    Article  Google Scholar 

  14. D. Hansel, G. Mato, C. Meunier, Synchrony in excitatory neural networks. Neural Comput. 7(2), 307–337 (1995)

    Article  Google Scholar 

  15. F.C. Hoppensteadt, E.M. Izhikevich, Pattern recognition via synchronization in phase-locked loop neural networks. IEEE Trans. Neural Netw. 11(3), 734–738 (2002)

    Article  Google Scholar 

  16. R .A. Horn, C .R. Johnson, Topics in Matrix Analysis (Cambridge University Press, Cambridge, 1991)

    Book  MATH  Google Scholar 

  17. G. Hu, Global synchronization for coupled Lur’e dynamical networks. Circuits Syst. Signal Process 32(6), 2851–2866 (2013)

    Article  MathSciNet  Google Scholar 

  18. Y. Kang, D.-H. Zhai, G.-P. Liu, Y.-B. Zhao, On input-to-state stability of switched stochastic nonlinear systems under extended asynchronous switching. IEEE Trans. Cybern. 46(5), 1092–1105 (2016)

    Article  Google Scholar 

  19. Y. Kang, D.-H. Zhai, G.-P. Liu, Y.-B. Zhao, P. Zhao, Stability analysis of a class of hybrid stochastic retarded systems under asynchronous switching. IEEE Trans Autom. Control 59(6), 1511–1523 (2014)

    Article  MathSciNet  Google Scholar 

  20. C. Li, X. Liao, K. Wong, Lag synchronization of hyperchaos with application to secure communications. Chaos Solitons Fractals 23(1), 183–193 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Y. Liu, Z. Wang, X. Liu, Exponential synchronization of complex networks with Markovian jump and mixed delays. Phys. Lett. A 372(22), 3986–3998 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. W. Lu, T. Chen, Almost periodic dynamics of a class of delayed neural networks with discontinuous activations. Neural Comput. 20(4), 1065–1090 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. J.Q. Lu, C.D. Ding, J.G. Lou, J.D. Cao, Outer synchronization of partially coupled dynamical networks via pinning impulsive controllers. J. Franklin Inst. 352, 5024–5041 (2015)

    Article  MathSciNet  Google Scholar 

  24. E. Moulay, M. Dambrine, N. Yeganefar, W. Perruquetti, Finite-time stability and stabilization of time-delay systems. Syst. Control Lett. 57(7), 561–566 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Qiu, S.X. Ding, H. Gao, S. Yin, Fuzzy-model-based reliable static output feedback \(H_{\infty }\) control of nonlinear hyperbolic PDE systems. IEEE Trans. Fuzzy Syst. 24(2), 388–400 (2016)

    Article  Google Scholar 

  27. J. Qiu, H. Gao, S.X. Ding, Recent advances on fuzzy-model-based nonlinear networked control systems: a survey. IEEE Trans. Ind. Electron. 63(2), 1207–1217 (2016)

    Article  Google Scholar 

  28. J. Qiu, G. Feng, H. Gao, Static-output-feedback \(H_{\infty }\) control of continuous-time T-S fuzzy affine systems via piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst. 21(2), 245–261 (2013)

    Article  Google Scholar 

  29. J. Qiu, H. Tian, Q. Lu, H. Gao, Nonsynchronized robust filtering design for continuous-time T-S fuzzy affine dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Cybern. 43(6), 1755–1766 (2013)

    Article  Google Scholar 

  30. J. Qiu, Y. Wei, H.R. Karimic, New approach to delay-dependent \(H_{\infty }\) control for continuous-time Markovian jump systems with time-varying delay and deficient transition descriptions. J. Franklin Inst. 352(1), 189–215 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. W. Ren, Y. Cao, Distributed Coordination of Multi-Agent Networks: Emergent Problems, Models, and Issues (Springer, London, 2011)

    Book  MATH  Google Scholar 

  32. H. Shen, S. Xu, X. Song, Y. Chu, Delay-dependent \(H_{\infty }\) filtering for stochastic systems with Markovian switching and mixed mode-dependent delays. Nonlinear Anal. Hybrid Syst. 4(1), 122–133 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. L. Shi, X. Yang, Y. Li, Z. Feng, Finite-time synchronization of nonidentical chaotic systems with multiple time-varying delays and bounded perturbations. Nonlinear Dyn. 83(1–2), 75–87 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Y. Tang, Terminal sliding mode control for rigid robots. Automatica 34(1), 51–56 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. S.T. Venkataraman, S. Gulati, Terminal slider control of nonlinear systems, in Proceedings of the International Conference on Advanced Robotics (Pisa, Italy, 1990)

  36. L. Wang, F. Xiao, Finite-time consensus problems for networks of dynamic agents. IEEE Trans. Autom. Control 55(4), 950–955 (2010)

    Article  MathSciNet  Google Scholar 

  37. H. Wang, Z. Han, Q. Xie, W. Zhang, Finite-time synchronization of uncertain unified chaotic systems based on CLF. Nonlinear Anal. RWA 10(5), 2842–2849 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Z. Wu, P. Shi, H. Su, J. Chu, Sampled-data exponential synchronization of complex dynamical networks with time-varying coupling delay. IEEE Trans. Neural Netw. Learn. Syst. 24(8), 1177–1187 (2013)

    Article  Google Scholar 

  39. E. Wu, X. Yang, Generalized lag synchronization of neural networks with discontinuous activations and bounded perturbations. Circuits Syst. Signal Process 34(7), 2381–2394 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. X. Yang, D.W.C. Ho, J. Lu, Q. Song, Finite-time cluster synchronization of T–S fuzzy complex networks with discontinuous subsystems and random coupling delays. IEEE Trans. Fuzzy Syst. 23(6), 2302–2316 (2015)

    Article  Google Scholar 

  41. X. Yang, J. Cao, Finite-time stochastic synchronization of complex networks. Appl. Math. Model. 34(11), 3631–3641 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. X. Yang, J. Lu, Finite-time synchronization of coupled networks with Markovian topology and impulsive effects. IEEE Trans. Autom. Control 61(8), 2256–2261 (2016)

    Article  MathSciNet  Google Scholar 

  43. X. Yang, Z. Wu, J. Cao, Finite-time synchronization of complex networks with nonidentical discontinuous nodes. Nonlinear Dyn. 73(4), 2313–2327 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. X. Yang, J. Cao, Z. Yang, synchronization of coupled reaction-diffusion neural networks with time-varying delays via pinning-impulsive controller. SIAM J. Control Optim. 51(5), 3486–3510 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. X. Yang, J. Cao, Exponential synchronization of delayed neural networks with discontinuous activations. IEEE Trans. Circuits Syst. I 60(9), 2431–2439 (2013)

    Article  MathSciNet  Google Scholar 

  46. X. Yang, Q. Song, J. Liang, B. He, Finite-time synchronization of coupled discontinuous neural networks with mixed delays and nonidentical perturbations. J. Franklin Inst. 352(10), 4382–4406 (2015)

    Article  MathSciNet  Google Scholar 

  47. X. Yang, J. Cao, J. Lu, Synchronization of randomly coupled neural networks with Markovian jumping and time-delay. IEEE Trans. Circuits Syst. I 60(2), 363–376 (2013)

    Article  MathSciNet  Google Scholar 

  48. Q. Zhou, P. Shi, H. Liu, S. Xu, Neural-network-based decentralized adaptive output-feedback control for large-scale stochastic nonlinear systems. IEEE Trans. Syst. Man. Cybern. Part B Cybern. 42(6), 1608–1619 (2012)

    Article  Google Scholar 

  49. Q. Zhou, P. Shi, Y. Tian, M. Wang, Approximation-based adaptive tracking control for MIMO nonlinear systems with input saturation. IEEE Trans. Cybern. 45(10), 2119–2128 (2015)

    Article  Google Scholar 

  50. Q. Zhou, P. Shi, S. Xu, H. Li, Observer-based adaptive neural network control for nonlinear stochastic systems with time-delay. IEEE Trans. Neural Netw. Learn. Syst. 24(1), 71–80 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinsong Yang.

Additional information

This work was jointly supported by the National Natural Science Foundation of China (NSFC) under Grants Nos. 61263020, 61673078, 61104145, 61273218, 61273220, and 61472257.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Cao, J., Song, Q. et al. Finite-Time Synchronization of Coupled Markovian Discontinuous Neural Networks with Mixed Delays. Circuits Syst Signal Process 36, 1860–1889 (2017). https://doi.org/10.1007/s00034-016-0408-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0408-2

Keywords

Navigation