Abstract
This paper is concerned with synchronization in a setting time for drive-response chaotic systems with multiple time-varying delays. The driving and response systems exhibit different dynamical behaviors with nonidentical delays and uncertain bounded external perturbations. Due to the time delays, existing finite-time stability theorem cannot be applied to the synchronization goal. By designing suitable controller and designing some Lyapunov–Krasovskii functionals, sufficient conditions guaranteeing the finite-time synchronization are derived without using existing finite-time stability theorem. Results of this paper extend most of existing ones which can only finite-timely synchronize coupled identical systems without delay. Numerical simulations demonstrate the effectiveness of the theoretical analysis.
Similar content being viewed by others
References
Pecora, L., Carroll, T.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)
Park, H.: Chaos synchronization between two different chaotic dynamical systems. Chaos Solitons Fractals 27(2), 549–554 (2006)
Bowong, S., Kakmeni, F.M., Fotsin, H.: A new adaptive observer-based synchronization scheme for private communication. Phys. Lett. A 355(3), 193–201 (2006)
Jiang, G., Chen, G., Tang, K.: A new criterion for chaos synchronizaton using linear state feedback control. Int. J. Bifurc. Chaos 13(8), 2343–2351 (2003)
Huang, T., Li, C., Yu, W., Chen, G.: Synchronization of delayed chaotic systems with parameter mismatches by using intermittent linear state feedback. Nonlinearity 22(3), 569–584 (2009)
Ma, J., Song, X., Jin, W., Wang, C.: Autapse-induced synchronization in a coupled neuronal network. Chaos Solitons Fractals 80, 31–38 (2015)
Yang, X., Cao, J.: Exponential synchronization of delayed neural networks with discontinuous activations. IEEE Trans. Circuits Syst. I 60(9), 2431–2439 (2013)
Mahmoud, G.M., Mahmoud, E.E.: Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlin. Dyn. 62(4), 875–882 (2010)
Zhang, R., Yang, S.: Adaptive synchronization of fractional-order chaotic systems via a single driving variable. Nonlin. Dyn. 66(4), 831–837 (2011)
Yang, X., Wu, Z., Cao, J.: Finite-time synchronization of complex networks with nonidentical discontinuous nodes. Nonlin. Dyn. 73(4), 2313–2327 (2010)
Cortes, J.: Finite-time convergent gradient flows with applications to network consensus. Automatica 42(11), 1993–2000 (2006)
Hui, Q., Haddad, W.M., Bha, S.P.: Finite-time semistability and consensus for nonlinear dynamical networks. IEEE Trans. Autom. Control 53(8), 1887–1900 (2008)
Xiao, F., Wang, L., Chen, J., Gao, Y.: Finite-time formation control for multi-agentsystems. Automatica 45(11), 2605–2611 (2009)
Wang, L., Xiao, F.: Finite-time consensus problems for networks of dynamic agents. IEEE Trans. Autom. Control 55(4), 950–955 (2010)
Aghababa, M.P., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Modell. 35(6), 3080–3091 (2011)
Wang, H., Han, Z., Xie, Q., Zhang, W.: Finite-time synchronization of uncertain unified chaotic systems based on CLF. Nonlin. Anal. Real World Appl. 10(5), 2003–2047 (2009)
Shen, J., Cao, J.: Finite-time synchronization of coupled neural networks via discontinuous controllers. Cogn. Neurodyn. 5(4), 373–385 (2011)
Aghababa, M.P., Aghababa, H.P.: Synchronization of mechanical horizontal platform systems in finite time. Appl. Math. Modell. 36(10), 4579–4591 (2012)
Qin, H., Ma, J., Jin, W.: Dynamics of electric activities in neuron and neurons of network induced by autapses. Technol. Sci. 57(5), 936–946 (2014)
Qin, H., Ma, J., Wang, C., Chu, R.: Autapse-induced target wave, spiral wave in regular network of neurons. Sci. China 57(10), 1918–1926 (2014)
Tang, Y.: Terminal sliding mode control for rigid robots. Automatica 34(1), 51–56 (1998)
Forti, M., Grazzini, M., Nistri, P., Pancioni, L.: Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations. Phys. D 214(1), 88–99 (2006)
Efimov, D., Polyakov, A., Fridman, E.: Comments on finite-time stability of time-delay systems. Automatica 50(7), 1944–1947 (2014)
Moulay, E., Dambrine, M., Yeganefar, N.: Finite-time stability and stabilization of time-delay systems. Syst. Control Lett. 57(7), 561–566 (2008)
Yang, X.: Can neural networks with arbitrary delays befinite-timely synchronized? Neurocomputing 143(2), 275–281 (2014)
Wu, X., Lai, D., Lu, H.: Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes. Nonlin. Dyn. 69(12), 667–683 (2012)
Zhao, J., Hill, D.J., Liu, T.: Synchronization of dynamical networks with nonidentical nodes: criteria and control. IEEE Trans. Circuits Syst. I 58(3), 584–594 (2011)
Lu, W., Liu, B., Chen, T.: Cluster synchronization in networks of coupled nonidentical dynamical systems. Chaos 20(1), 1–12 (2010)
Wu, Z., Fu, X.: Cluster mixed synchronization via pinning control and adaptive coupling strength in community networks with nonidentical nodes. Commun. Nonlin. Sci. Numer. Simul. 17(4), 1628–1636 (2012)
Wagg, D.J.: Partial synchronization of nonidentical chaotic systems via adaptive control, with applications to modeling coupled nonlinear systems. Int. J. Bifurc. Chaos 12(3), 561–570 (2002)
He, W., Qian, F., Cao, J., Han, Q.: Impulsive synchronization of two nonidentical chaotic systems with time-varying delay. Phy. Lett. A 375(3), 498–504 (2011)
Yang, X., Cao, J., Lu, J.: Stochastic synchronization of complex networks with nonidentical nodes via hybrid adaptive and impulsive control. IEEE Trans. Circuits Syst. I 59(2), 371–384 (2012)
Yang, X., Zhu, Q., Huang, C.: Lag stochastic synchronization of chaotic mixed time-delayed neural networks with uncertain parameters or pertuibations. Neurocomputing 74(10), 1617–1625 (2011)
Park, J.H.: Robust guaranteed cost control for uncertain linear differential systems of neutral type. Appl. Math. Comput. 140(2), 523–535 (2003)
Wang, B., Shi, P., Karimi, H.R., Song, Y., Wang, J.: Robust \(H_{\infty }\) synchronization of a hyper-chaotic system with disturbance input. Nonlin. Anal. Real World Appl. 14(3), 1487–1495 (2013)
Yang, X., Cao, J.: Hybrid adaptive and impulsive synchronization of uncertain complex networks with delays and general uncertain perturbations. Appl. Math. Comput. 227(15), 480–493 (2014)
Acknowledgments
This work was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 61263020 and 11471061, the Natural Science Foundation of Scientific and Technical Committee of Chongqing City under Grant No. cstc2014jcyjA00014, and the Research Foundation of HongHe University under Grant No. XJ15SX05.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shi, L., Yang, X., Li, Y. et al. Finite-time synchronization of nonidentical chaotic systems with multiple time-varying delays and bounded perturbations. Nonlinear Dyn 83, 75–87 (2016). https://doi.org/10.1007/s11071-015-2310-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-015-2310-z