Abstract
The Internet of Things (IoT) is a concept that permits the integration of all objects into an Internet environment. IoT has spawned numerous intelligent applications and services to benefit organizations, society, and consumer experiences. On the other hand, traditional computing methods are incapable of handling the demands of these services. The advent of cloud computing methods that provides software, platform, and infrastructure such as services have realized these applications. However, one of the critical obstacles of real-time cloud-based IoT applications is service response time. Edge computing solutions have been developed to address these issues. In this work, we provide a comprehensive survey of driving enforce edge computing for IoT applications on aspects of the research timeline, applications, vision, challenges, and open research issues. Through this, we highlight the benefits of edge computing over cloud computing in almost domains. This study will contribute to driving empowerment intelligence to the edge of networks to form the next intelligent edge era.
Similar content being viewed by others
Data Availability
Enquiries about data availability should be directed to the authors.
References
Quy, V. K., Van-Hau, N., Quy, N. M., Anh, D. V., Ngoc, L. A., & Chehri, A. (2023). An efficient edge computing management mechanism for sustainable smart cities. Sustainable Computing: Informatics and Systems, 37, 100867. https://doi.org/10.1016/j.suscom.2023.100867
Ahmed, S. T., Kumar, V. V., Singh, K. K., Singh, A., Muthukumaran, V., & Gupta, D. (2022). 6G enabled federated learning for secure IoMT resource recommendation and propagation analysis. Computers and Electrical Engineering, 102, 108210. https://doi.org/10.1016/j.compeleceng.2022.108210
Quy, V. K., Chehri, A., Han, N. D., & Ban, N. T. (2023). Innovative trends in the 6G era: A comprehensive survey of architecture, applications, technologies, and challenges. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3269297
Dao, N.-N., Pham, Q.-V., Do, D.-T., & Dustdar, S. (2021). The sky is the edge—Toward mobile coverage from the sky. IEEE Internet Computing, 25(2), 101–108. https://doi.org/10.1109/MIC.2020.3033976
Zikria, Y. B., Ali, R., Afzal, M. K., & Kim, S. W. (2021). Next-generation Internet of Things (IoT): Opportunities, challenges, and solutions. Sensors (Basel, Switzerland), 21(4), 1174. https://doi.org/10.3390/s21041174
El-Sayed, H., et al. (2018). Edge of things: The big picture on the integration of edge, IoT and the cloud in a distributed computing environment. IEEE Access, 6, 1706–1717. https://doi.org/10.1109/ACCESS.2017.2780087
Wang, T., Ke, H., Zheng, X., Wang, K., Sangaiah, A. K., & Liu, A. (2020). Big data cleaning based on mobile edge computing in industrial sensor-cloud. IEEE Transactions on Industrial Informatics, 16(2), 1321–1329. https://doi.org/10.1109/TII.2019.2938861
De Donno, M., Tange, K., & Dragoni, N. (2019). Foundations and evolution of modern computing paradigms: Cloud, IoT, edge, and fog. IEEE Access, 7, 150936–150948. https://doi.org/10.1109/ACCESS.2019.2947652
Quy, V. K., Hung, L. N., & Han, N. D. (2019). CEPRM: A cloud-assisted energy-saving and performance-improving routing mechanism for MANETs. Journal of Communications, 14(12), 1211–1217. https://doi.org/10.12720/jcm.14.12.1211-1217
Ramaiah, N. S., & Ahmed, S. T. (2022). An IoT-based treatment optimization and priority assignment using machine learning. ECS Transactions, 107(1), 1487. https://doi.org/10.1149/10701.1487ecst
Dang, V. A., Quy, V. K., Hau, V. N., Nguyen, T., & Nguyen, D. C. (2023). Intelligent healthcare: Integration of emerging technologies and Internet of Things for humanity. Sensors, 23(9), 4200. https://doi.org/10.3390/s23094200
Ren, J., He, Y., Huang, G., Yu, G., Cai, Y., & Zhang, Z. (2019). An edge-computing based architecture for mobile augmented reality. IEEE Network, 33(4), 162–169. https://doi.org/10.1109/MNET.2018.1800132
Hassan, N., Yau, K. A., & Wu, C. (2019). Edge computing in 5G: A review. IEEE Access, 7, 127276–127289. https://doi.org/10.1109/ACCESS.2019.2938534
Khalid, M., et al. (2021). Autonomous transportation in emergency healthcare services: Framework, challenges, and future work. IEEE Internet of Things Magazine, 4(1), 28–33. https://doi.org/10.1109/IOTM.0011.2000076
Yang, Z., Liang, B., & Ji, W. (2021). An intelligent end-edge-cloud architecture for visual IoT assisted healthcare systems. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2021.3052778
Kang, J., et al. (2019). Blockchain for secure and efficient data sharing in vehicular edge computing and networks. IEEE Internet of Things Journal, 6(3), 4660–4670. https://doi.org/10.1109/JIOT.2018.2875542
Tang, J., Liu, S., Liu, L., Yu, B., & Shi, W. (2020). LoPECS: A low-power edge computing system for real-time autonomous driving services. IEEE Access, 8, 30467–30479. https://doi.org/10.1109/ACCESS.2020.2970728
Su, X., Sperlì, G., Moscato, V., Picariello, A., Esposito, C., & Choi, C. (2019). An edge intelligence empowered recommender system enabling cultural heritage applications. IEEE Transactions on Industrial Informatics, 15(7), 4266–4275. https://doi.org/10.1109/TII.2019.2908056
Sun, C., Li, H., Li, X., Wen, J., Xiong, Q., & Zhou, W. (2020). Convergence of recommender systems and edge computing: A comprehensive survey. IEEE Access, 8, 47118–47132. https://doi.org/10.1109/ACCESS.2020.2978896
Ghosh, S., Mukherjee, A., Ghosh, S. K., & Buyya, R. (2020). Mobi-IoST: Mobility-aware cloud-fog-edge-IoT collaborative framework for time-critical applications. IEEE Transactions on Network Science and Engineering, 7(4), 2271–2285. https://doi.org/10.1109/TNSE.2019.2941754
Wang, H., et al. (2020). Architectural design alternatives based on cloud/edge/fog computing for connected vehicles. IEEE Communications Surveys & Tutorials, 22(4), 2349–2377. https://doi.org/10.1109/COMST.2020.3020854
Xie, R., Tang, Q., Wang, Q., Liu, X., Yu, F. R., & Huang, T. (2019). Collaborative vehicular edge computing networks: Architecture design and research challenges. IEEE Access, 7, 178942–178952. https://doi.org/10.1109/ACCESS.2019.2957749
Qadir, J., Sainz-De-Abajo, B., Khan, A., García-Zapirain, B., De La Torre-Díez, I., & Mahmood, H. (2020). Towards mobile edge computing: Taxonomy, challenges, applications and future realms. IEEE Access, 8, 189129–189162. https://doi.org/10.1109/ACCESS.2020.3026938
Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., & Sabella, D. (2017). On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Communications Surveys & Tutorials, 19(3), 1657–1681. https://doi.org/10.1109/COMST.2017.2705720
Quy, V. K., Hau, N. V., Anh, D. V., et al. (2021). Smart healthcare IoT applications based on fog computing: Architecture, applications and challenges. Complex and Intelligent Systems. https://doi.org/10.1007/s40747-021-00582-9
Wang, X., Han, Y., Leung, V. C. M., Niyato, D., Yan, X., & Chen, X. (2020). Convergence of edge computing and deep learning: A comprehensive survey. IEEE Communications Surveys & Tutorials, 22(2), 869–904. https://doi.org/10.1109/COMST.2020.2970550
Pham, Q., et al. (2020). A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art. IEEE Access, 8, 116974–117017. https://doi.org/10.1109/ACCESS.2020.3001277
Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R. H., Morrow, M. J., & Polakos, P. A. (2018). A comprehensive survey on fog computing: State-of-the-art and research challenges. IEEE Communications Surveys & Tutorials, 20(1), 416–464. https://doi.org/10.1109/COMST.2017.2771153
Abbas, N., Zhang, Y., Taherkordi, A., & Skeie, T. (2018). Mobile edge computing: A survey. IEEE Internet of Things Journal, 5(1), 450–465. https://doi.org/10.1109/JIOT.2017.2750180
Omoniwa, B., Hussain, R., Javed, M. A., Bouk, S. H., & Malik, S. A. (2019). Fog/edge computing-based IoT (FECIoT): Architecture, applications, and research issues. IEEE Internet of Things Journal, 6(3), 4118–4149. https://doi.org/10.1109/JIOT.2018.2875544
Jiang, C., Chen, Y., Wang, Q., & Liu, K. J. R. (2018). Data-driven auction mechanism design in IaaS cloud computing. IEEE Transactions on Services Computing, 11(5), 743–756. https://doi.org/10.1109/TSC.2015.2464810
Asim, M., Wang, Y., Wang, K., & Huang, P.-Q. (2020). A review on computational intelligence techniques in cloud and edge computing. IEEE Transactions on Emerging Topics in Computational Intelligence, 4(6), 742–763. https://doi.org/10.1109/TETCI.2020.3007905
Alhamazani, K., et al. (2019). Cross-layer multi-cloud real-time application QoS monitoring and benchmarking as-a-service framework. IEEE Transactions on Cloud Computing, 7(1), 48–61. https://doi.org/10.1109/TCC.2015.2441715
Liu, Y., Peng, M., Shou, G., Chen, Y., & Chen, S. (2020). Toward edge intelligence: Multiaccess edge computing for 5G and internet of things. IEEE Internet of Things Journal, 7(8), 6722–6747. https://doi.org/10.1109/JIOT.2020.3004500
Ma, L., Wang, X., Wang, X., Wang, L., Shi, Y., & Huang, M. (2021). TCDA: Truthful combinatorial double auctions for mobile edge computing in industrial Internet of Things. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2021.3064314
Kristiani, E., Yang, C.-T., Huang, C.-Y., Ko, P.-C., & Fathoni, H. (2021). On construction of sensors, edge, and cloud (iSEC) framework for smart system integration and applications. IEEE Internet of Things Journal, 8(1), 309–319. https://doi.org/10.1109/JIOT.2020.3004244
Ma, J., Zhou, H., Liu, C., Mingcheng, E., Jiang, Z., & Wang, Q. (2020). Study on edge-cloud collaborative production scheduling based on enterprises with multi-factory. IEEE Access, 8, 30069–30080. https://doi.org/10.1109/ACCESS.2020.2972914
https://www.cisco.com/c/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf. Accessed 07 May 2021.
Zhang, L., Liang, Y., & Niyato, D. (2019). 6G visions: Mobile ultra-broadband, super Internet-of-Things, and artificial intelligence. China Communications, 16(8), 1–14. https://doi.org/10.23919/JCC.2019.08.001
Mohammadi, M., Al-Fuqaha, A., Sorour, S., & Guizani, M. (2018). Deep learning for IoT big data and streaming analytics: A survey. IEEE Communications Surveys & Tutorials, 20(4), 2923–2960. https://doi.org/10.1109/COMST.2018.2844341
Sezer, O. B., Dogdu, E., & Ozbayoglu, A. M. (2018). Context-aware computing, learning, and big data in internet of things: A survey. IEEE Internet of Things Journal, 5(1), 1–27. https://doi.org/10.1109/JIOT.2017.2773600
https://www.huawei.com/en/news/2017/3/Huawei-Launched-Edge-Computing-IoT-Solution. Accessed 07 May 2021.
https://www.nokia.com/blog/edge-computing-takes-a-further-leap-forward-with-move-to-harmonize-standards. Accessed 7 May 2022.
https://www.3gpp.org/news-events/2152-edge_sa6. Accessed 7 May 2022.
https://www.3gpp.org, Specification # 23.758. Accessed 7 May 2022.
https://www.samsungnext.com/blog/the-future-of-ai-is-on-the-edge. Accessed 7 May 2022.
Ren, P., et al. (2020). Edge AR X5: An edge-assisted multi-user collaborative framework for mobile web augmented reality in 5G and beyond. IEEE Transactions on Cloud Computing. https://doi.org/10.1109/TCC.2020.3046128
Al-Shuwaili, & Simeone, O. (2017). Energy-efficient resource allocation for mobile edge computing-based augmented reality applications. IEEE Wireless Communications Letters, 6(3), 398–401. https://doi.org/10.1109/LWC.2017.2696539
Ahn, J., Lee, J., Yoon, S., & Choi, J. K. (2020). A novel resolution and power control scheme for energy-efficient mobile augmented reality applications in mobile edge computing. IEEE Wireless Communications Letters, 9(6), 750–754. https://doi.org/10.1109/LWC.2019.2950250
Ahn, J., Lee, J., Niyato, D., & Park, H.-S. (2020). Novel QoS-guaranteed orchestration scheme for energy-efficient mobile augmented reality applications in multi-access edge computing. IEEE Transactions on Vehicular Technology, 69(11), 13631–13645. https://doi.org/10.1109/TVT.2020.3020982
Qiao, X., Ren, P., Dustdar, S., Liu, L., Ma, H., & Chen, J. (2019). Web AR: A promising future for mobile augmented reality—State of the art, challenges, and insights. Proceedings of the IEEE, 107(4), 651–666. https://doi.org/10.1109/JPROC.2019.2895105
Hou, W., Ning, Z., & Guo, L. (2018). Green survivable collaborative edge computing in smart cities. IEEE Transactions on Industrial Informatics, 14(4), 1594–1605. https://doi.org/10.1109/TII.2018.2797922
Yu, B., Zhang, X., You, I., & Khan, U. S. (2021). Efficient computation offloading in edge computing enabled smart home. IEEE Access, 9, 48631–48639. https://doi.org/10.1109/ACCESS.2021.3066789
Deng, Y., Chen, Z., Yao, X., Hassan, S., & Wu, J. (2019). Task scheduling for smart city applications based on multi-server mobile edge computing. IEEE Access, 7, 14410–14421. https://doi.org/10.1109/ACCESS.2019.2893486
Liu, Y., Yang, C., Jiang, L., Xie, S., & Zhang, Y. (2019). Intelligent edge computing for IoT-based energy management in smart cities. IEEE Network, 33(2), 111–117. https://doi.org/10.1109/MNET.2019.1800254
Khan, L. U., Yaqoob, I., Tran, N. H., Kazmi, S. M. A., Dang, T. N., & Hong, C. S. (2020). Edge-computing-enabled smart cities: A comprehensive survey. IEEE Internet of Things Journal, 7(10), 10200–10232. https://doi.org/10.1109/JIOT.2020.2987070
Cui, J., Wei, L., Zhong, H., Zhang, J., Xu, Y., & Liu, L. (2020). Edge computing in VANETs—An efficient and privacy-preserving cooperative downloading scheme. IEEE Journal on Selected Areas in Communications, 38(6), 1191–1204. https://doi.org/10.1109/JSAC.2020.2986617
Huang, C.-M., & Lai, C.-F. (2020). The delay-constrained and network-situation-aware V2V2I VANET data offloading based on the multi-access edge computing (MEC) architecture. IEEE Open Journal of Vehicular Technology, 1, 331–347. https://doi.org/10.1109/OJVT.2020.3028684
Deng, Z., Cai, Z., & Liang, M. (2020). A multi-hop VANETs-assisted offloading strategy in vehicular mobile edge computing. IEEE Access, 8, 53062–53071. https://doi.org/10.1109/ACCESS.2020.2981501
Cui, J., Wei, L., Zhang, J., Xu, Y., & Zhong, H. (2019). An efficient message-authentication scheme based on edge computing for vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 20(5), 1621–1632. https://doi.org/10.1109/TITS.2018.2827460
Li, J., et al. (2020). A secured framework for SDN-based edge computing in IoT-enabled healthcare system. IEEE Access, 8, 135479–135490. https://doi.org/10.1109/ACCESS.2020.3011503
Abdellatif, et al. (2021). MEdge-chain: Leveraging edge computing and blockchain for efficient medical data exchange. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2021.3052910
Alabdulatif, Khalil, I., Yi, X., & Guizani, M. (2019). Secure edge of things for smart healthcare surveillance framework. IEEE Access, 7, 31010–31021. https://doi.org/10.1109/ACCESS.2019.2899323
Pace, P., Aloi, G., Gravina, R., Caliciuri, G., Fortino, G., & Liotta, A. (2019). An edge-based architecture to support efficient applications for healthcare industry 4.0. IEEE Transactions on Industrial Informatics, 15(1), 481–489. https://doi.org/10.1109/TII.2018.2843169
Amin, S. U., & Hossain, M. S. (2021). Edge intelligence and internet of things in healthcare: A survey. IEEE Access, 9, 45–59. https://doi.org/10.1109/ACCESS.2020.3045115
Usman, M., Jolfaei, A., & Jan, M. A. (2020). RaSEC: An intelligent framework for reliable and secure multilevel edge computing in industrial environments. IEEE Transactions on Industry Applications, 56(4), 4543–4551. https://doi.org/10.1109/TIA.2020.2975488
Jiang, C., Wan, J., & Abbas, H. (2021). An edge computing node deployment method based on improved k-means clustering algorithm for smart manufacturing. IEEE Systems Journal, 15(2), 2230–2240. https://doi.org/10.1109/JSYST.2020.2986649
Qi, Q., & Tao, F. (2019). A smart manufacturing service system based on edge computing, fog computing, and cloud computing. IEEE Access, 7, 86769–86777. https://doi.org/10.1109/ACCESS.2019.2923610
Li, X., Wan, J., Dai, H., Imran, M., Xia, M., & Celesti, A. (2019). A hybrid computing solution and resource scheduling strategy for edge computing in smart manufacturing. IEEE Transactions on Industrial Informatics, 15(7), 4225–4234. https://doi.org/10.1109/TII.2019.2899679
Lee, K. M., Huo, Y. Z., Zhang, S. Z., & Ng, K. K. H. (2020). Design of a smart manufacturing system with the application of multi-access edge computing and blockchain technology. IEEE Access, 8, 28659–28667. https://doi.org/10.1109/ACCESS.2020.2972284
Qiu, T., Chi, J., Zhou, X., Ning, Z., Atiquzzaman, M., & Wu, D. O. (2020). Edge computing in industrial Internet of Things: Architecture, advances and challenges. IEEE Communications Surveys & Tutorials, 22(4), 2462–2488. https://doi.org/10.1109/COMST.2020.3009103
Wang, J., Cao, C., Wang, J., Lu, K., Jukan, A., & Zhao, W. (2021). Optimal task allocation and coding design for secure edge computing with heterogeneous edge devices. IEEE Transactions on Cloud Computing. https://doi.org/10.1109/TCC.2021.3050012
Li, K. (2019). Computation offloading strategy optimisation with multiple heterogeneous servers in mobile edge computing. IEEE Transactions on Sustainable Computing. https://doi.org/10.1109/TSUSC.2019.2904680
Chen, X., Li, W., Lu, S., Zhou, Z., & Fu, X. (2018). Efficient resource allocation for on-demand mobile-edge cloud computing. IEEE Transactions on Vehicular Technology, 67(9), 8769–8780. https://doi.org/10.1109/TVT.2018.2846232
Zhao, J., Li, Q., Gong, Y., & Zhang, K. (2019). Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks. IEEE Transactions on Vehicular Technology, 68(8), 7944–7956. https://doi.org/10.1109/TVT.2019.2917890
Zhang, P., Zhang, Y., Dong, H., & Jin, H. (2021). Mobility and dependence-aware QoS monitoring in mobile edge computing. IEEE Transactions on Cloud Computing. https://doi.org/10.1109/TCC.2021.3063050
Li, J., Li, X., Gao, Y., Gao, Y., & Zhang, R. (2017). Dynamic cloudlet-assisted energy-saving routing mechanism for mobile ad hoc networks. IEEE Access, 5, 20908–20920. https://doi.org/10.1109/ACCESS.2017.2759138
He, X., Jin, R., & Dai, H. (2020). Physical-layer assisted secure offloading in mobile-edge computing. IEEE Transactions on Wireless Communications, 19(6), 4054–4066. https://doi.org/10.1109/TWC.2020.2979456
Xu, X., Huang, Q., Yin, X., Abbasi, M., Khosravi, M. R., & Qi, L. (2020). Intelligent offloading for collaborative smart city services in edge computing. IEEE Internet of Things Journal, 7(9), 7919–7927. https://doi.org/10.1109/JIOT.2020.3000871
Ni, J., Lin, X., & Shen, X. S. (2019). Toward edge-assisted internet of things: From security and efficiency perspectives. IEEE Network, 33(2), 50–57. https://doi.org/10.1109/MNET.2019.1800229
Xiao, Y., Jia, Y., Liu, C., Cheng, X., Yu, J., & Lv, W. (2019). Edge computing security: State of the art and challenges. Proceedings of the IEEE, 107(8), 1608–1631. https://doi.org/10.1109/JPROC.2019.2918437
Quy, V. K., Nam, V. H., Linh, D. M., et al. (2021). A survey of QoS-aware routing protocols for the MANET-WSN convergence scenarios in IoT networks. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08433-z
Tseng, L., Wong, L., Otoum, S., Aloqaily, M., & Othman, J. B. (2020). Blockchain for managing heterogeneous internet of things: A perspective architecture. IEEE Network, 34(1), 16–23. https://doi.org/10.1109/MNET.001.1900103
Acknowledgements
The authors thank sincerely Prof. Isaac Woungang and Prof. Abdellah Chehri for their valuable contributions and comments on this research.
Funding
The authors have not disclosed any funding.
Author information
Authors and Affiliations
Contributions
N.M. Quy and V.KQ have performed the study conception and deployment. Data collection and analysis were performed by NMQ, LAN, NTB, NVH and VKQ. The first draft of the manuscript was written by NMQ and VKQ. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. The author corresponding is VKQ.
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
Acronyms used in this paper
Acronym | Meaning | Acronym | Meaning |
---|---|---|---|
AR | Augmented reality | EG | Edge computing |
AI | Artificial intelligence | M2M | Mechanism to mechanism |
AODV | Ad-hoc on-demand distance vector | MANET | Mobile ad hoc networks |
API | Application programming interface | MCC | Multi-cloud computing |
D2D | Device to device | MEC | Mobile edge computing |
DDoS | Distributed denial of service | PHM | Prognostics and health management |
DoS | Denial of service | QoS | Quality of service |
IIoT | Industrial Internet of Things | RSU | Road side unit |
CC | Cloud computing | SaaS | Software as a service |
GIS | Geographic information systems | SDN | Software-defined networking |
GPRS | General packet radio service | FC | Fog computing |
GPS | Global positioning system | UAV | Unmanned aerial vehicle |
IaaS | Infrastructure as a service | V2I | Vehicle to infrastructure |
IoT | Internet of Things | V2V | Vehicle to vehicle |
IoVs | Internet of vehicles | VANET | Vehicular ad hoc networks |
EC | Edge computing |
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Quy, N.M., Ngoc, L.A., Ban, N.T. et al. Edge Computing for Real-Time Internet of Things Applications: Future Internet Revolution. Wireless Pers Commun 132, 1423–1452 (2023). https://doi.org/10.1007/s11277-023-10669-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-023-10669-w