Abstract
This paper gives a review and synthesis of methods of evaluating dimensionality reduction techniques. Particular attention is paid to rank-order neighborhood evaluation metrics. A framework is created for exploring dimensionality reduction quality through visualization. An associated toolkit is implemented in R. The toolkit includes scatterplots, heat maps, loess smoothing, performance lift diagrams, and animation. The overall rationale is to help researchers compare dimensionality reduction techniques and use visual insights to help select and improve techniques. Examples are given for dimensionality reduction in manifolds and for dimensionality reduction applied to fashion image and consumer survey datasets.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
This value is usually in \(\left[ 0,1\right] \). However, it is possible that if there is less agreement than random, this value will be less than 0.
Data can be downloaded from https://www.kaggle.com/miroslavsabo/young-people-survey.
This is a property of the Barnes–Hut approximation for t-SNE, but Rtsne also forces this for exact t-SNE.
References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Matthieu, D., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: a system for large-scale machine learning. In: Keeton, K., Roscoe, T. (eds.) 12th USENIX Symposium on Operating Systems Design and Implementation (\(OSDI\) 16), pp. 265–283 (2016)
Akkucuk, U.: Nonlinear mapping: approaches based on optimizing an index of continuity and applying classical metric MDS on revised distances. Ph.D. thesis, Rutgers University, Newark, NJ (2004)
Akkucuk, U., Carroll, J.D.: PARAMAP vs. Isomap: a comparison of two nonlinear mapping algorithms. J. Classif. 23(2), 221–254 (2006)
Alvarez-Meza, A.M., Lee, J.A., Verleysen, M., Castellanos-Dominguez, G.: Kernel-based dimensionality reduction using renyi’s \(\alpha \)-entropy measures of similarity. Neurocomputing 222, 36–46 (2017)
Andrew, V.M., Purchase, H.: On the role of design in information visualization. Inf. Vis. 10(4), 356–371 (2011)
Aupetit, M.: Visualizing distortions and recovering topology in continuous projection techniques. Neurocomputing 70(7), 1304–1330 (2007)
Barbosa, A., Paulovich, F.V., Paiva, A., Goldenstein, S., Petronetto, F., Nonato, L.G.: Visualizing and interacting with kernelized data. IEEE Trans. Vis. Comput. Graph. 22(3), 1314–1325 (2015)
Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)
Berge, J.M.F.T.: Orthogonal procrustes rotation for two or more matrices. Psychometrika 42(2), 267–276 (1977)
Bertini, E., Tatu, A., Keim, D.: Quality metrics in high-dimensional data visualization: an overview and systematization. IEEE Trans. Vis. Comput. Graph. 17(12), 2203–2212 (2011)
Borg, I., Groenen, P.J.F.: Modern Multidimensional Scaling: Theory and Applications, 2nd edn. Springer, New York (2005)
Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010, pp. 177–186. Physica-Verlag, Heidelberg (2010)
Boulesteix, A.L., Dangl, R., Dean, N., Guyon, I., Hennig, C., Leisch, F., Steinley, D., Mechelen, I.V.: Benchmarking in cluster analysis: a white paper. arXiv preprint arXiv:1809.10496 (2018)
Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 30(7), 1145–1159 (1997)
Buja, A., Swayne, D.F., Littman, M.L., Dean, N., Hofmann, H., Chen, L.: Data visualization with multidimensional scaling. J. Comput. Graph. Stat. 17(2), 444–472 (2008)
Busing, F.M.T.A., Commandeur, J.J.F., Heiser, W.J.: PROXSCAL: a multidimensional scaling program for individual differences scaling with constraints. In: Softstat’97: Advances in Statistical Software, vol. 6, pp. 67–74. Lucius & Lucius, Stuttgart (1997)
Campello, R.J.G.B.: Evaluation of unsupervised learning results: making the seemingly impossible possible. In: CEUR Workshop Proceedings, Aachen, Germant, pp. 4–4 (2019)
Carpendale, S.: Evaluating information visualizations. In: Kerren, A., Stasko, J., Fekete, J.-D., North, C. (eds.) Information Visualization: Human-Centered Issues and Perspectives, pp. 19–45. Springer, Heidelberg (2008)
Carroll, J.D., Wish, M.: Multidimensional perceptual models and measurement methods. In: Carterette, E.C., Friedman, M.P. (eds.) Handbook of Perception, vol. 2, pp. 391–447. Academic Press, New York (1974)
Cavallo, M.: Çağatay Demiralp: a visual interaction framework for dimensionality reduction based data exploration. In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, CHI EA ’18. ACM, New York (2018)
Chen, L.: Local multidimensional scaling for nonlinear dimension reduction, graph layout and proximity analysis. Ph.D. dissertation, University of Pennsylvania (2006)
Chen, L., Buja, A.: Local multidimensional scaling for nonlinear dimension reduction, graph drawing, and proximity analysis. J. Am. Stat. Assoc. 104(486), 209–219 (2009)
Chen, L., Buja, A.: Stress functions for nonlinear dimension reduction, proximity analysis, and graph drawing. J. Mach. Learn. Res. 14, 1145–1173 (2013)
Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74(368), 829–836 (1979)
Cleveland, W.S., McGill, R.: The many faces of a scatterplot. J. Am. Stat. Assoc. 79(388), 807–822 (1984)
Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harm. Anal. 21(1), 5–30 (2006)
Coimbra, D.B., Martins, R.M., Neves, T., Telea, A.C., Paulovich, F.V.: Explaining three-dimensional dimensionality reduction plots. Inf. Vis. 15(2), 154–172 (2016)
Cutura, R., Holzer, S., Aupetit, M., Sedlmair, M.: VisCoDeR: a tool for visually comparing dimensionality reduction algorithms. In: Proceedings of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) (2018)
Dang, T.N., Wilkinson, L.: ScagExplorer: exploring scatterplots by their scagnostics. pp. 73–80. IEEE, Piscataway (2014)
de Leeuw, J., Mair, P.: Multidimensional scaling using majorization: SMACOF in R. J. Stat. Softw. 31(3), 1–30 (2009)
Demartines, P., Herault, J.: Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Trans. Neural Netw. 8(1), 148–154 (1997)
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)
Etemadpour, R., Motta, R., de Souza Paiva, J.G., Minghim, R., Oliveira, M.C.F., Linsen, L.: Perception-based evaluation of projection methods for multidimensional data visualization. IEEE Trans. Vis. Comput. Graph. 21(1), 81–94 (2015)
France, S.L.: Properties of a General Measure of Configuration Agreement. Algorithms from and for Nature and Life. Springer, Heidelberg (2013)
France, S.L.: The Shape and the Space: Marketing Mapping in the Big Data Era, pp. 1–7. Academy of Marketing, Helensburgh (2019)
France, S.L., Carroll, J.D.: Development of an agreement metric based upon the Rand index for the evaluation of dimensionality reduction techniques, with applications to mapping customer data. In: Perner, P. (ed.) Lecture Notes in Artificial Intelligence, Proceedings Conference MLDM 2007, pp. 499–517. Springer, Heidelberg (2007)
France, S.L., Carroll, J.D.: Two-way multidimensional scaling: a review. IEEE Transactions on Systems, Man, and Cybernetics. Part C (Applications and Reviews) 41(5), 644–661 (2011)
France, S.L., Ghose, S.: Marketing analytics: methods, practice, implementation, and links to other fields. Expert Syst. Appl. 119, 456–475 (2019)
Groenen, P.J.K., Mathar, R., Heiser, W.J.: The majorization approach to multidimensional scaling for Minkowski distances. J. Classif. 12(1), 3–19 (1995)
Hahsler, M., Hornik, K., Buchta, C.: Getting things in order: an introduction to the R package seriation. J. Stat. Softw. 25(3), 1–34 (2008)
Hand, D.J., Till, R.J.: A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach. Learn. 45(2), 171–186 (2001)
Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)
Hinton, G., Roweis, S.: Stochastic neighbor embedding. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Proceedings of the 15th International Conference on Neural Information Processing Systems, pp. 857–864. MIT Press, Cambridge (2002)
Hubert, L.J., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
Iacobucci, D., Grisaffe, D., DeSarbo, W.: Statistical perceptual maps: using confidence region ellipses to enhance the interpretations of brand positions in multidimensional scaling. J. Mark. Anal. 5(3), 81–98 (2017)
Ingram, S., Munzner, T., Irvine, V., Tory, M., Bergner, S., Möller, T.: DimStiller: workflows for dimensional analysis and reduction. In: MacEachren, A., Miksch, S. (eds.) 2010 IEEE Symposium on Visual Analytics Science and Technology, pp. 3–10. IEEE, Piscataway (2010)
Jankun-Kelly, T.J., Ma, K.L., Gertz, M.: A model and framework for visualization exploration. IEEE Trans. Vis. Comput. Graph. 13(2), 357–369 (2007)
Jefferson, L., Harvey, R.: Accommodating color blind computer users. In: Proceedings of the 8th International ACM SIGACCESS Conference on Computers and Accessibility, Assets ’06, pp. 40–47. ACM, New York (2006)
Joyce, J.M.: Kullback–Leibler divergence. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science, pp. 720–722. Springer, Berlin (2011)
Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A.: kernlab—an S4 package for kernel methods in R. J. Stat. Softw. 11(9), 1–20 (2004)
Kaski, S., Nikkila, J., Oja, M., Venna, J., Toronen, P., Castren, E.: Trustworthiness and metrics in visualizing similarity of gene expression. BMC Bioinform. 4(1), 48 (2003)
Kraemer, G.: Package ‘dimRed’ (2017). https://cran.r-project.org/web/packages/dimRed/
Krijthe, J., van der Maaten, L., Krijthe, M.J.: Package ‘rtsne’ (2018). https://cran.r-project.org/web/packages/dimRed/
Kruskal, J.B.: Multidimensional scaling for optimizing a goodness of fit metric to a nonmetric hypothesis. Psychometrika 29(1), 1–27 (1964)
Kruskal, J.B.: Nonmetric multidimensional scaling: a numerical method. Psychometrika 29(2), 115–129 (1964)
Laskowski, P.H.: The traditional and modern look at Tissot’s indicatrix. Am. Cartogr. 16(2), 123–133 (1989)
Lee, J., Verleysen, M.: Quality assessment of nonlinear dimensionality reduction based on k-ary neighborhoods. In: Saeys, Y., Liu, H., Inza, I., Wehenkel, L., de Peer, Y.V. (eds.) New Challenges for Feature Selection in Data Mining and Knowledge Discovery, vol. 4, pp. 21–35. JMLR: Workshop and Conference Proceedings (2008)
Lee, J.A., Peluffo-Ordónez, D.H., Verleysen, M.: Multi-scale similarities in stochastic neighbour embedding: reducing dimensionality while preserving both local and global structure. Neurocomputing 169, 246–261 (2015)
Lee, J.A., Verleysen, M.: Quality assessment of dimensionality reduction: rank-based criteria. Neurocomputing 72(7–9), 1431–1443 (2009)
Lee, J.A., Verleysen, M.: Scale-independent quality criteria for dimensionality reduction. Pattern Recognit. Lett. 31(14), 2248–2257 (2010)
Lespinats, S., Aupetit, M.: CheckViz: sanity check and topological clues for linear and non-linear mappings. Comput. Graph. Forum 30(1), 113–125 (2011)
Liiv, I.: Seriation and matrix reordering methods: an historical overview. Stat. Anal. Data Mining ASA Data Sci. J. 3(2), 70–91 (2010)
Lu, Y., Zhou, K., Wu, X., Gong, P.: A novel multi-graph framework for salient object detection. Vis. Comput. 35(11), 1683–1699 (2019)
Lueks, W., Mokbel, B., Biehl, M., Hammer, B.: How to evaluate dimensionality reduction? In: Hammer, B., Villmann, T. (eds.) Proceedings of the Workshop—New Challenges in Neural Computation 2011, vol. 5, pp. 29–37 (2011)
Ma, Y., Fu, Y.: Manifold Learning Theory and Applications, 1st edn. CRC Press, Boca Raton (2011)
Martins, R.M., Coimbra, D.B., Minghim, R., Telea, A.C.: Visual analysis of dimensionality reduction quality for parameterized projections. Comput. Graph. 41, 26–42 (2014)
Martins, R.M., Minghim, R., Telea, A.C.: Explaining neighborhood preservation for multidimensional projections. In: Borgo, R., Turkay, C. (eds.) Computer Graphics and Visual Computing (CGVC), pp. 1–8. The Eurographics Association, Goslar (2015)
Matute, J., Telea, A.C., Linsen, L.: Skeleton-based scagnostics. IEEE Trans. Vis. Comput. Graph. 24(1), 542–552 (2018)
McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction, pp. 1–51. arXiv preprint arXiv:1802.03426 (2018)
McKenna, S., Mazur, D., Agutter, J., Meyer, M.: Design activity framework for visualization design. IEEE Trans. Vis. Comput. Graph. 20(12), 2191–2200 (2014)
Mokbel, B., Lueks, W., Gisbrecht, A., Hammer, B.: Visualizing the quality of dimensionality reduction. Neurocomputing 112, 109–123 (2013)
Motta, R., Minghim, R., de Andrade Lopes, A., Oliveira, M.C.F.: Graph-based measures to assist user assessment of multidimensional projections. Neurocomputing 150((B)), 583–598 (2015)
North, C.: Toward measuring visualization insight. IEEE Comput. Graph. Appl. 26(3), 6–9 (2006)
Ntoutsi, E., Schubert, E., Zimek, A., Zimmermann, A.: 1st workshop on evaluation and experimental design in data mining and machine learning (EDML 2019). CEUR Workshop Proceedings, Aachen, Germany, pp. 1–3 (2019)
Pagliosa, P., Paulovich, F.V., Minghim, R., Levkowitz, H., Nonato, L.G.: Projection inspector: assessment and synthesis of multidimensional projections. Neurocomputing 150((B)), 599–610 (2015)
Pandey, A.V., Krause, J., Felix, C., Boy, J., Bertini, E.: Towards understanding human similarity perception in the analysis of large sets of scatter plots. In: Kaye, J., Druin, A., Lampe, C., Morris, D., Hourcade, J.P. (eds.) Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 3659–3669. ACM, New York (2016)
Paulovich, F.V., Silva, C.T., Nonato, L.G.: Two-phase mapping for projecting massive data sets. IEEE Trans. Vis. Comput. Graph. 16(6), 1281–1290 (2010)
Peay, E.R.: Multidimensional rotation and scaling of configurations to optimal agreement. Psychometrika 53(2), 199–208 (1988)
Plaisant, C.: The challenge of information visualization evaluation. In: Costabile, M.F. (ed.) Proceedings of the Working Conference on Advanced Visual Interfaces, AVI ’04, pp. 109–116. ACM, New York (2004)
Pryke, A., Mostaghim, S., Nazemi, A.: Heatmap visualization of population based multi objective algorithms. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) Evolutionary Multi-Criterion Optimization, pp. 361–375. Springer, Heidelberg (2007)
Qu, Z., Hullman, J.: Evaluating visualization sets: trade-offs between local effectiveness and global consistency. In: Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization, BELIV ’16, pp. 44–52. ACM, New York (2016)
Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)
Rasul, K., Xiao, H.: Fashion-MNIST (2017). https://github.com/zalandoresearch/fashion-mnist
Ringel, D.M., Skiera, B.: Understanding competition using big consumer search data. In: R.H.S. Jr. (ed.) 47th Hawaii International Conference on System Sciences, pp. 3129–3138 (2014)
Ringel, D.M., Skiera, B.: Visualizing asymmetric competition among more than 1,000 products using big search data. Mark. Sci. 35(3), 511–534 (2016)
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)
Sacha, D., Zhang, L., Sedlmair, M., Lee, J.A., Peltonen, J., Weiskopf, D., North, S.C., Keim, D.A.: Visual interaction with dimensionality reduction: a structured literature analysis. IEEE Trans. Vis. Comput. Graph. 23(1), 241–250 (2017)
Schönemann, P.H., Carroll, R.M.: Fitting one matrix to another under choice of a central dilation and a rigid motion. Psychometrika 35(2), 245–255 (1970)
Sedlmair, M., Munzner, T., Tory, M.: Empirical guidance on scatterplot and dimension reduction technique choices. IEEE Trans. Vis. Comput. Graph. 19(12), 2634–2643 (2013)
Seifert, C., Sabol, V., Kienreich, W.: Stress maps: Analysing local phenomena in dimensionality reduction based visualisations. In: Proceedings of the 1st European Symposium on Visual Analytics Science and Technology (EuroVAST’10), vol. 1, pp. 1–6 (2010)
Shlens, J.: A tutorial on principal components analysis (2005). arXiv:1404.1100
Shyu, W.M., Grosse, E., Cleveland, W.S.: Local regression models. In: Hastie, T. (ed.) Statistical Models in S, pp. 309–376. Chapman and Hall, Boca Raton (1991)
Sibson, R.: Studies in the robustness of multidimensional scaling: procrustes statistics. J. R. Stat. Soc. B 40(2), 234–238 (1978)
Silva, V.D., Tenenbaum, J.B.: Global versus local methods in nonlinear dimensionality reduction. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems 15, pp. 705–712. MIT Press, Cambridge (2003)
Snyder, J.P.: Flattening the Earth: Two Thousand Years of Map Projections, 1st edn. University of Chicago Press, Chicago (1997)
Sobczyk, A.: Projections in Minkowski and Banach spaces. Duke Math. J. 8(1), 78–106 (1941)
Spathis, D., Passalis, N., Tefas, A.: Fast, visual and interactive semi-supervised dimensionality reduction. In: Leal-Taixé, L., Roth, S. (eds.) Computer Vision—ECCV 2018 Workshops, pp. 550–563. Springer, Cham (2019)
Stahnke, J., Dörk, M., Müller, B., Thom, A.: Probing projections: interaction techniques for interpreting arrangements and errors of dimensionality reductions. IEEE Trans. Vis. Comput. Graph. 22(1), 629–638 (2016)
Stasko, J.: Value-driven evaluation of visualizations. In: Lam, H., Isenberg, P., Isenberg, T., Sedlmair, M. (eds.) Proceedings of the Fifth Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization, BELIV ’14, pp. 46–53. ACM, New York (2014)
Steinley, D.: Properties of the Hubert–Arabie adjusted Rand index. Psychol. Methods 9(3), 386–396 (2004)
Tatu, A., Bak, P., Bertini, E., Keim, D., Schneidewind, J.: Visual quality metrics and human perception: an initial study on 2D projections of large multidimensional data. In: Santucci, G. (ed.) Proceedings of the International Conference on Advanced Visual Interfaces, AVI ’10, pp. 49–56. ACM, New York (2010)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)
Torgerson, W.S.: Multidimensional scaling, I: theory and method. Psychometrika 17(4), 401–419 (1952)
Torgerson, W.S.: Theory and Methods of Scaling, 1st edn. Wiley, New York (1958)
Tory, M., Möller, T.: Rethinking visualization: a high-level taxonomy. In: Ward, M., Munzner, T. (eds.) IEEE Symposium on Information Visualization, pp. 151–158 (2004)
Trosset, M.W.: A new formulation of the nonmetric strain problem in multidimensional scaling. J. Classif. 15(1), 15–35 (1998)
Tuan, N.D., Wilkinson, L.: Transforming scagnostics to reveal hidden features. IEEE Trans. Vis. Comput. Graph. 20(12), 1624–1632 (2014)
Tukey, J.W.: Exploratory Data Analysis, 1st edn. Addison-Wesley, Reading (1977)
Tukey, J.W., Tukey, P.A.: Computer graphics and exploratory data analysis: An introduction. In: Proceedings of the Sixth Annual Conference and Exposition: Computer Graphics 85, pp. 773–785. National Computer Graphics Association, Fairfax (1985)
Tversky, A., Hutchinson, J.W.: Nearest neighbor analysis of psychological spaces. Psychol. Rev. 93(1), 3–22 (1986)
Tversky, A., Rinott, Y., Newman, C.M.: Nearest neighbor analysis of point processes: applications to multidimensional scaling. J. Math. Psychol. 27(3), 235–250 (1983)
Upson Jr., C., Faulhaber, T., Kamins, D., Laidlaw, D., Schlegel, D., Vroom, J., Gurwitz, R., van Dam, A.: The application visualization system: a computational environment for scientific visualization. IEEE Comput. Graph. Appl. 9(4), 30–42 (1989)
van der Maaten, L.: Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15(1), 3221–3245 (2014)
van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)
van der Maaten, L., Postma, E., den Herik, J.V.: Dimensionality reduction: a comparative review: Working paper, Maastricht University (2009)
Venna, J., Kaski, S.: Neighborhood preservation in nonlinear projection methods: an experimental study. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) Artificial Neural Networks—ICANN 2001, pp. 485–491. Springer, Berlin (2001)
Venna, J., Kaski, S.: Local multidimensional scaling. Neural Netw. 19(6–7), 889–899 (2006)
Vidal, R., Ma, Y., Sastry, S.: Generalized Principal Component Analysis, 1st edn. Springer, New York (2016)
Viégas, F.B., Wattenberg, M.: Artistic data visualization: beyond visual analytics. In: Schuler, D. (ed.) Online Communities and Social Computing, pp. 182–191. Springer, Heidelberg (2007)
Wedel, M., Kamakura, W.A.: Market Segmentation: Conceptual and Methodological Foundations, 2nd edn. Kluwer Academic Publishers, Boston (2000)
Wilkinson, L., Anand, A., Grossman, R.: Graph-theoretic scagnostics. In: Stasko, J.T., Ward, M. (eds.) IEEE Symposium on Information Visualization, 2005, INFOVIS 2005, pp. 157–164. Piscataway, IEEE (2005)
Yang, L., Jin, R.: Distance metric learning: a comprehensive survey. Working paper, Michigan State University. (2006). http://www.cse.msu.edu/~rongjin/semisupervised/dist-metric-survey.pdf
Young, F.W., Takane, Y., Lewyckyj, R.: ALSCAL: a nonmetric multidimensional scaling program with several individual-differences options. Behav. Res. Methods Instrum. 10(3), 451–453 (1978)
Zeileis, A., Hornik, K., Murrell, P.: Escaping RGBland: selecting colors for statistical graphics. Comput. Stat. Data Anal. 53(9), 3259–3270 (2009)
Zhang, P., Ren, Y., Zhang, B.: A new embedding quality assessment method for manifold learning. Neurocomputing 97, 251–266 (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
France, S.L., Akkucuk, U. A review, framework, and R toolkit for exploring, evaluating, and comparing visualization methods. Vis Comput 37, 457–475 (2021). https://doi.org/10.1007/s00371-020-01817-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-020-01817-5