Abstract
This paper introduces a set of volumetric functions suitable for geometric processing of volumes. We start with Laplace–Beltrami eigenfunctions on the bounding surface and interpolate them into the interior using barycentric coordinates. The interpolated eigenfunctions: (1) can be computed efficiently by using the boundary mesh only; (2) can be seen as a shape-aware generalization of barycentric coordinates; (3) can be used for efficiently representing volumetric functions; (4) can be naturally plugged into existing spectral embedding constructions such as the diffusion embedding to provide their volumetric counterparts. Using the interior diffusion embedding, we define the interior Heat Kernel Signature (iHKS) and examine its performance for the task of volumetric point correspondence. We show that the three main qualities of the surface Heat Kernel Signature—being informative, multiscale, and insensitive to pose—are inherited by this volumetric construction. Next, we construct a bag of features based shape descriptor that aggregates the iHKS signatures over the volume of a shape, and evaluate its performance on a public shape retrieval benchmark. We find that while, theoretically, strict isometry invariance requires concentrating on the intrinsic surface properties alone, yet, practically, pose insensitive shape retrieval can be achieved using volumetric information.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. ACM Trans. Graph. 24(3), 408–416 (2005)
Belyaev, A.: On transfinite barycentric coordinates. In: SGP, pp. 89–99 (2006)
Ben-Chen, M., Gotsman, C.: On the optimality of spectral compression of mesh data. ACM Trans. Graph. 24, 60–80 (2005). http://doi.acm.org/10.1145/1037957.1037961
Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2003)
Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14(1), 213–230 (2008)
Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google: Geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30, 1–20 (2011). http://doi.acm.org/10.1145/1899404.1899405
Bustos, B., Keim, D.A., Saupe, D., Schreck, T., Vranić, D.V.: Feature-based similarity search in 3d object databases. ACM Comput. Surv. 37(4), 345–387 (2005)
Coifman, R.R., Lafon, S.: Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions. Appl. Comput. Harmon. Anal. 21, 31–52 (2006). doi:10.1016/j.acha.2005.07.005
Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Nadler, B., Warner, F., Zucker, S.W.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proc. Natl. Acad. Sci. USA 102(21), 7426–7431 (2005). http://www.pnas.org/cgi/content/abstract/102/21/7432
Gal, R., Shamir, A., Cohen-Or, D.: Pose-oblivious shape signature. IEEE Trans. Vis. Comput. Graph. 13(2), 261–271 (2007). http:doi.ieeecomputersociety.org/10.1109/TVCG.2007.45
Garland, M., Zhou, Y.: Quadric-based simplification in any dimension. ACM Trans. Graph. 24(2), 209–239 (2005)
Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., Ramani, K.: Three-dimensional shape searching: state-of-the-art review and future trends. Comput. Aided Des. 37(5), 509–530 (2005)
Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. In: TOG (SIGGRAPH), p. 71 (2007)
Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes. In: TOG (SIGGRAPH), pp. 561–566 (2005)
Lévy, B.: Laplace–Beltrami eigenfunctions: Towards an algorithm that understands geometry. In: Shape Modeling International (2006)
Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoue, G., Nguyen, H.V., Ohbuchi, R., Ohkita, Y., Ohishi, Y., Porikli, F., Reuter, M., Sipiran, I., Smeets, D., Suetens, P., Tabia, H., Vandermeulen, D.: SHREC ’11 track: shape retrieval on non-rigid 3d watertight meshes, pp. 79–88. doi:10.2312/3DOR/3DOR11/079-088. http://diglib.eg.org/EG/DL/WS/3DOR/3DOR11/079-088.pdf
Ling, H., Jacobs, D.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007). doi:10.1109/TPAMI.2007.41
Lipman, Y., Rustamov, R.M., Funkhouser, T.A.: Biharmonic distance. ACM Trans. Graph. 29, 1–11 (2010). http://doi.acm.org/10.1145/1805964.1805971
Liu, Y.S., Fang, Y., Ramani, K.: Idss: deformation invariant signatures for molecular shape comparison. BMC Bioinform. 10(1), 157 (2009). doi:10.1186/1471-2105-10-157. http://www.biomedcentral.com/1471-2105/10/157
Mémoli, F.: A spectral notion of Gromov–Wasserstein distances and related methods. Appl. Comput. Harmon. Anal. 30, 363–401 (2011)
Meyer, M., Desbrun, M., Schröder, P., Barr, A.: Discrete differential geometry operators for triangulated 2-manifolds. In: Proceedings of Visual Mathematics (2002)
Min, P.: Binvox. http://www.google.com/search?q=binvox
Nooruddin, F.S., Turk, G.: Simplification and repair of polygonal models using volumetric techniques. IEEE Trans. Vis. Comput. Graph. 9(2), 191–205 (2003)
Ovsjanikov, M., Sun, J., Guibas, L.: Global intrinsic symmetries of shapes. In: Eurographics Symposium on Geometry Processing (SGP) (2008)
Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)
Raviv, D., Bronstein, M.M., Bronstein, A.M., Kimmel, R.: Volumetric heat kernel signatures. In: Proceedings of the ACM Workshop on 3D Object Retrieval, 3DOR ’10, pp. 39–44. ACM, New York (2010). http://doi.acm.org/10.1145/1877808.1877817
Reuter, M., Wolter, F.E., Peinecke, N.: Laplace-spectra as fingerprints for shape matching. In: Solid and Physical Modeling, pp. 101–106 (2005)
Reuter, M., Wolter, F.E., Shenton, M., Niethammer, M.: Laplace-Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis. Comput. Aided Des. 41(10), 739–755 (2009). doi:10.1016/j.cad.2009.02.007
Rustamov, R.: Laplace–Beltrami eigenfunctions for deformation invariant shape representation. In: Symposium on Geometry Processing (2007)
Rustamov, R.: On manifold learning and mesh editing. Tech. rep. (2008)
Rustamov, R., Lipman, Y., Funkhouser, T.: Interior distance using barycentric coordinates. Comput. Graph. Forum (Symposium on Geometry Processing) 28(5) (2009)
Shen, Y., Ma, L., Liu, H.: An mls-based cartoon deformation. Vis. Comput. 26, 1229–1239 (2010). doi:10.1007/s00371-009-0404-7
Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Proceedings of the Symposium on Geometry Processing, SGP ’09, pp. 1383–1392. Eurographics Association, Aire-la-Ville (2009). http://portal.acm.org/citation.cfm?id=1735603.1735621
Tangelder, J., Veltkamp, R.: A survey of content based 3d shape retrieval methods. Multimed. Tools Appl. 39, 441–471 (2008)
Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y.: Mesh editing with Poisson-based gradient field manipulation. In: TOG (SIGGRAPH), pp. 644–651 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rustamov, R.M. Interpolated eigenfunctions for volumetric shape processing. Vis Comput 27, 951–961 (2011). https://doi.org/10.1007/s00371-011-0629-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-011-0629-0