[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/1877808.1877817acmconferencesArticle/Chapter ViewAbstractPublication PagesmmConference Proceedingsconference-collections
research-article

Volumetric heat kernel signatures

Published: 25 October 2010 Publication History

Abstract

Invariant shape descriptors are instrumental in numerous shape analysis tasks including deformable shape comparison, registration, classification, and retrieval. Most existing constructions model a 3D shape as a two-dimensional surface describing the shape boundary, typically represented as a triangular mesh or a point cloud. Using intrinsic properties of the surface, invariant descriptors can be designed. One such example is the recently introduced heat kernel signature, based on the Laplace-Beltrami operator of the surface. In many applications, however, a volumetric shape model is more natural and convenient. Moreover, modeling shape deformations as approximate isometries of the volume of an object, rather than its boundary, better captures natural behavior of non-rigid deformations in many cases. Here, we extend the idea of heat kernel signature to robust isometry-invariant volumetric descriptors, and show their utility in shape retrieval. The proposed approach achieves state-of-the-art results on the SHREC 2010 large-scale shape retrieval benchmark.

References

[1]
S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape contexts. Trans. PAMI, pages 509--522, 2002.
[2]
M. Ben-Chen, O. Weber, and C. Gotsman. Characterizing shape using conformal factors. In Proc. 3DOR, 2008.
[3]
P. Bérard, G. Besson, and S. Gallot. Embedding riemannian manifolds by their heat kernel. Geometric and Functional Analysis, 4(4):373--398, 1994.
[4]
S. Biasotti, S. Marini, M. Mortara, and G. Patané. An overview on properties and efficacy of topological skeletons in shape modeling. In Proc. SMI, pages 245--254, 2003.
[5]
A. M. Bronstein, M. M. Bronstein, A. M. Bruckstein, and R. Kimmel. Analysis of two-dimensional non-rigid shapes. IJCV, 78(1):67--88, 2008.
[6]
A. M. Bronstein, M. M. Bronstein, U. Castellani, B. Falcidieno, A. Fusiello, A. Godil, L. J. Guibas, I. Kokkinos, Z. Lian, M. Ovsjanikov, G. Patané, M. Spagnuolo, and R. Toldo. Shrec 2010: robust large-scale shape retrieval benchmark. In Proc. 3DOR, 2010.
[7]
A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. PNAS, 103(5):1168--1172, 2006.
[8]
A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Numerical geometry of non-rigid shapes. Springer-Verlag New York Inc, 2008.
[9]
A. M. Bronstein, M. M. Bronstein, M. Ovsjanikov, and L. J. Guibas. Shape google: a computer vision approach to invariant shape retrieval. In Proc. NORDIA, 2009.
[10]
M. M. Bronstein and I. Kokkinos. Scale-invariant heat kernel signatures for non-rigid shape recognition. In Proc. CVPR, 2010.
[11]
U. Clarenz, M. Rumpf, and A. Telea. Robust feature detection and local classification for surfaces based on moment analysis. Trans. Visualization and Computer Graphics, 10(5):516--524, 2004.
[12]
A. Dubrovina and R. Kimmel. Matching shapes by eigendecomposition of the Laplace-Beltrami operator. In Proc. 3DPVT, 2010.
[13]
A. Elad and R. Kimmel. Bending invariant representations for surfaces. In Proc. CVPR, pages 168--174, 2001.
[14]
R. Gal, A. Shamir, and D. Cohen-Or. Pose-oblivious shape signature. Trans. Visualization and Computer Graphics, 13(2):261--271, 2007.
[15]
N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann. Robust global registration. In Proc. SGP, 2005.
[16]
M. Hilaga, Y. Shinagawa, T. Kohmura, and T. Kunii. Topology matching for fully automatic similarity estimation of 3D shapes. In Proc. Computer Graphics and Interactive Techniques, pages 203--212, 2001.
[17]
A. Ion, G. Peyré, Y. Haxhimusa, S. Peltier, W. G. Kropatsch, and L. Cohen. Shape matching using the geodesic eccentricity transform--a study. In Proc. Workshop of the Austrian Association for Pattern Recognition (OAGM/AAPR), 2007.
[18]
P. W. Jones, M. Maggioni, and R. Schul. Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels. PNAS, 105(6):1803, 2008.
[19]
M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant spherical harmonic representation of 3D shape descriptors. In Proc. SGP, pages 156--164, 2003.
[20]
M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Symmetry descriptors and 3D shape matching. In Proc. SGP, pages 115--123, 2004.
[21]
H. Ling and D. W. Jacobs. Shape classification using the inner-distance. Trans. PAMI, 29(2):286--299, 2007.
[22]
D. Lowe. Distinctive image features from scale-invariant keypoint. IJCV, 2004.
[23]
F. Mémoli and G. Sapiro. A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics, 5:313--346, 2005.
[24]
N. J. Mitra, L. J. Guibas, J. Giesen, and M. Pauly. Probabilistic fingerprints for shapes. In Proc. SGP, 2006.
[25]
M. Novotni and R. Klein. 3D Zernike descriptors for content based shape retrieval. In Proc. ACM Symp. Solid Modeling and Applications, pages 216--225, 2003.
[26]
R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Shape distributions. TOG, 21(4):807--832, 2002.
[27]
E. Paquet, M. Rioux, A. Murching, T. Naveen, and A. Tabatabai. Description of shape information for 2-D and 3-D objects. Signal Processing: Image Communication, 16(1--2):103--122, 2000.
[28]
D. Raviv, A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Symmetries of non-rigid shapes. In Proc. NRTL, 2007.
[29]
M. Reuter, F.-E. Wolter, and N. Peinecke. Laplace-spectra as fingerprints for shape matching. In Proc. ACM Symp. Solid and Physical Modeling, pages 101--106, 2005.
[30]
R. Rustamov. Robust volumetric shape descriptor. In Proc. 3DOR, 2010.
[31]
R. M. Rustamov. Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In Proc. SGP, pages 225--233, 2007.
[32]
P. Shilane and T. Funkhauser. Selecting distinctive 3D shape descriptors for similarity retrieval. In Proc. Shape Modelling and Applications, 2006.
[33]
P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. The Princeton shape benchmark. In Proc. SMI, pages 167--178, 2004.
[34]
J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In Proc. CVPR, 2003.
[35]
R. Sumner and J. Popović. Deformation transfer for triangle meshes. In Proc. Conf. Computer Graphics and Interactive Techniques, pages 399--405, 2004.
[36]
J. Sun, M. Ovsjanikov, and L. J. Guibas. A concise and provably informative multi-scale signature based on heat diffusion. In Proc. SGP, 2009.
[37]
H. Sundar, D. Silver, N. Gagvani, and S. Dickinson. Skeleton based shape matching and retrieval. In Proc. SMI, volume 130, 2003.
[38]
A. Tal, M. Elad, and S. Ar. Content based retrieval of VRML objects - an iterative and interactive approach. In Proc. Eurographics Workshop on Multimedia, 2001.
[39]
N. Thorstensen and R. Keriven. Non-rigid shape matching using geometry and photometry. In Proc. CVPR, 2009.
[40]
R. Toldo, U. Castellani, and A. Fusiello. Visual vocabulary signature for 3D object retrieval and partial matching. In Proc. 3DOR, 2009.
[41]
A. Zaharescu, E. Boyer, K. Varanasi, and R. Horaud. Surface feature detection and description with applications to mesh matching. In Proc. CVPR, 2009.
[42]
C. Zhang and T. Chen. Efficient feature extraction for 2D/3D objects in meshrepresentation. In Proc. ICIP, volume 3, 2001.

Cited By

View all
  • (2025)Simulation-free prediction of atrial fibrillation inducibility with the fibrotic kernel signatureMedical Image Analysis10.1016/j.media.2024.10337599(103375)Online publication date: Jan-2025
  • (2024)Semi-Supervised 3D Shape Segmentation via Self RefiningIEEE Transactions on Image Processing10.1109/TIP.2024.337420033(2044-2057)Online publication date: 2024
  • (2023)Deformable Protein Shape Classification Based on Deep Learning, and the Fractional Fokker–Planck and Kähler–Dirac EquationsIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2022.314679645:1(391-407)Online publication date: 1-Jan-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
3DOR '10: Proceedings of the ACM workshop on 3D object retrieval
October 2010
96 pages
ISBN:9781450301602
DOI:10.1145/1877808
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 October 2010

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. heat kernel signature
  2. volumetric laplacian

Qualifiers

  • Research-article

Conference

MM '10
Sponsor:
MM '10: ACM Multimedia Conference
October 25, 2010
Firenze, Italy

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)49
  • Downloads (Last 6 weeks)9
Reflects downloads up to 14 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2025)Simulation-free prediction of atrial fibrillation inducibility with the fibrotic kernel signatureMedical Image Analysis10.1016/j.media.2024.10337599(103375)Online publication date: Jan-2025
  • (2024)Semi-Supervised 3D Shape Segmentation via Self RefiningIEEE Transactions on Image Processing10.1109/TIP.2024.337420033(2044-2057)Online publication date: 2024
  • (2023)Deformable Protein Shape Classification Based on Deep Learning, and the Fractional Fokker–Planck and Kähler–Dirac EquationsIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2022.314679645:1(391-407)Online publication date: 1-Jan-2023
  • (2023)Average increment scale-invariant heat kernel signature for 3D non-rigid shape analysisMultimedia Tools and Applications10.1007/s11042-023-15346-583:3(8077-8115)Online publication date: 13-Jun-2023
  • (2022)Classification of Protein-Binding Sites Using a Spherical Convolutional Neural NetworkJournal of Chemical Information and Modeling10.1021/acs.jcim.2c0083262:22(5383-5396)Online publication date: 7-Nov-2022
  • (2022)Spherical harmonic shape descriptors of nodal force demands for quantifying spatial truss connection complexityArchitecture, Structures and Construction10.1007/s44150-022-00021-42:1(145-164)Online publication date: 28-Feb-2022
  • (2022)Manufacturing process classification based on heat kernel signature and convolutional neural networksJournal of Intelligent Manufacturing10.1007/s10845-022-02009-934:8(3389-3411)Online publication date: 30-Aug-2022
  • (2021)Detail-Preserving Shape UnfoldingSensors10.3390/s2104118721:4(1187)Online publication date: 8-Feb-2021
  • (2021)Graph of graphs analysis for multiplexed data with application to imaging mass cytometryPLOS Computational Biology10.1371/journal.pcbi.100874117:3(e1008741)Online publication date: 29-Mar-2021
  • (2021)HodgeNetACM Transactions on Graphics10.1145/3450626.345979740:4(1-11)Online publication date: 19-Jul-2021
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media