[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

MDFEM: Multivariate decomposition finite element method for elliptic PDEs with uniform random diffusion coefficients using higher-order QMC and FEM

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We introduce the multivariate decomposition finite element method (MDFEM) for solving elliptic PDEs with uniform random diffusion coefficients. We show that the MDFEM can be used to reduce the computational complexity of estimating the expected value of a linear functional of the solution of the PDE. The proposed algorithm combines the multivariate decomposition method, to compute infinite-dimensional integrals, with the finite element method, to solve different instances of the PDE. The strategy of the MDFEM is to decompose the infinite-dimensional problem into multiple finite-dimensional ones which lends itself to easier parallelization than to solve a single large dimensional problem. Our first result adjusts the analysis of the multivariate decomposition method to incorporate the \((\ln (n))^d\)-factor which typically appears in error bounds for d-dimensional n-point cubature formulae and we take care of the fact that n needs to come, e.g., in powers of 2 for higher order approximations. For the further analysis we specialize the cubature methods to be two types of quasi-Monte Carlo (QMC) rules, being digitally shifted polynomial lattice rules and interlaced polynomial lattice rules. The second and main contribution then presents a bound on the error of the MDFEM and shows higher-order convergence w.r.t. the total computational cost in case of the interlaced polynomial lattice rules in combination with a higher-order finite element method. We show that the cost to achieve an error \(\epsilon \) is of order \(\epsilon ^{-a_{\mathrm {MDFEM}}}\) with \(a_{\mathrm {MDFEM}} = 1/\lambda + d'/\tau \) if the QMC cubature errors can be bounded by \(n^{-\lambda }\) and the FE approximations converge like \(h^\tau \) with cost \(h^{d'}\), where \(\lambda = \tau (1-p^*) / (p^* (1+d'/\tau ))\) and \(p^*\) is a parameter representing the “sparsity” of the random field expansion. A comparison with a dimension truncation algorithm shows that the MDFEM will perform better than the truncation algorithm if \(p^*\) is sufficiently small, i.e., the representation of the random field is sufficiently sparse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachmayr, M., Cohen, A., DeVore, R., Migliorati, G.: Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients. ESAIM: Math. Model. Numer. Anal. 51(1), 341–363 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bachmayr, M., Cohen, A., Dũng, D., Schwab, C.: Fully discrete approximation of parametric and stochastic elliptic PDEs. SIAM J. Numer. Anal. 55(5), 2151–2186 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bachmayr, M., Cohen, A., Migliorati, G.: Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients. ESAIM: Math. Model. Numer. Anal. 51(1), 321–339 (2017)

    Article  MathSciNet  Google Scholar 

  4. Baldeaux, J., Dick, J., Leobacher, G., Nuyens, D., Pillichshammer, F.: Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules. Numer. Algorithms 59(3), 403–431 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  Google Scholar 

  6. Cohen, A., DeVore, R., Schwab, C.: Convergence rates of best \(n\)-term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math. 10(6), 615–646 (2010)

    Article  MathSciNet  Google Scholar 

  7. Cohen, A., DeVore, R., Schwab, C.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs. Anal. Appl. 9(01), 11–47 (2011)

    Article  MathSciNet  Google Scholar 

  8. Creutzig, J., Dereich, S., Müller-Gronbach, T., Ritter, K.: Infinite-dimensional quadrature and approximation of distributions. Found. Comput. Math. 9(4), 391–429 (2009)

    Article  MathSciNet  Google Scholar 

  9. Dick, J., Gnewuch, M.: Infinite-dimensional integration in weighted Hilbert spaces: anchored decompositions, optimal deterministic algorithms, and higher-order convergence. Found. Comput. Math. 14(5), 1027–1077 (2014)

    Article  MathSciNet  Google Scholar 

  10. Dick, J., Gnewuch, M.: Optimal randomized changing dimension algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition. J. Approx. Theory 184, 111–145 (2014)

    Article  MathSciNet  Google Scholar 

  11. Dick, J., Kuo, F.Y., Le Gia, Q.T., Nuyens, D., Schwab, C.: Higher order QMC Petrov–Galerkin discretization for affine parametric operator equations with random field inputs. SIAM J. Numer. Anal. 52(6), 2676–2702 (2014)

    Article  MathSciNet  Google Scholar 

  12. Dick, J., Kuo, F.Y., Pillichshammer, F., Sloan, I.H.: Construction algorithms for polynomial lattice rules for multivariate integration. Math. Comput. 74(252), 1895–1921 (2005)

    Article  MathSciNet  Google Scholar 

  13. Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013)

    Article  MathSciNet  Google Scholar 

  14. Dũng, D., Griebel, M.: Hyperbolic cross approximation in infinite dimensions. J. Complex. 33, 55–88 (2016)

    Article  MathSciNet  Google Scholar 

  15. Gantner, R.N., Herrmann, L., Schwab, C.: Multilevel QMC with product weights for affine-parametric, elliptic PDEs. In: Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan, pp. 373–405. Springer (2018)

  16. Gantner, R.N., Herrmann, L., Schwab, C.: Quasi-Monte Carlo integration for affine-parametric, elliptic PDEs: local supports and product weights. SIAM J. Numer. Anal. 56(1), 111–135 (2018)

    Article  MathSciNet  Google Scholar 

  17. Gilbert, A.D., Kuo, F.Y., Nuyens, D., Wasilkowski, G.W.: Efficient implementations of the multivariate decomposition method for approximating infinite-variate integrals. SIAM J. Sci. Comput. 40(5), A3240–A3266 (2018)

    Article  MathSciNet  Google Scholar 

  18. Gnewuch, M., Hefter, M., Hinrichs, A., Ritter, K.: Embeddings of weighted Hilbert spaces and applications to multivariate and infinite-dimensional integration. J. Approx. Theory 222, 8–19 (2017)

    Article  MathSciNet  Google Scholar 

  19. Gnewuch, M., Mayer, S., Ritter, K.: On weighted Hilbert spaces and integration of functions of infinitely many variables. J. Complex. 30(2), 29–47 (2014)

    Article  MathSciNet  Google Scholar 

  20. Graham, I.G., Kuo, F.Y., Nichols, J.A., Scheichl, R., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131(2), 329–368 (2015)

    Article  MathSciNet  Google Scholar 

  21. Herrmann, L., Schwab, C.: QMC integration for lognormal-parametric, elliptic PDEs: local supports and product weights. Numer. Math. 141(1), 63–102 (2019)

    Article  MathSciNet  Google Scholar 

  22. Hickernell, F.J., Kritzer, P., Kuo, F.Y., Nuyens, D.: Weighted compound integration rules with higher order convergence for all \(n\). Numer. Algorithms 59(2), 161–183 (2012)

    Article  MathSciNet  Google Scholar 

  23. Hickernell, F.J., Müller-Gronbach, T., Niu, B., Ritter, K.: Multi-level Monte Carlo algorithms for infinite-dimensional integration on \({\mathbb{R}}^{\mathbb{N}}\). J. Complex. 26(3), 229–254 (2010)

    Article  Google Scholar 

  24. Kazashi, Y.: Quasi-Monte Carlo integration with product weights for elliptic PDEs with log-normal coefficients. IMA J. Numer. Anal. 39, 1563–1593 (2017)

    Article  MathSciNet  Google Scholar 

  25. Kuo, F.Y., Nuyens, D.: Application of quasi-Monte Carlo methods to elliptic PDEs with random diffusion coefficients: a survey of analysis and implementation. Found. Comput. Math. 16(6), 1631–1696 (2016)

    Article  MathSciNet  Google Scholar 

  26. Kuo, F.Y., Nuyens, D., Plaskota, L., Sloan, I.H., Wasilkowski, G.W.: Infinite-dimensional integration and the multivariate decomposition method. J. Comput. Appl. Math. 326, 217–234 (2017)

    Article  MathSciNet  Google Scholar 

  27. Kuo, F.Y., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo methods for high-dimensional integration: the standard (weighted Hilbert space) setting and beyond. ANZIAM J. 53(1), 1–37 (2011)

    Article  MathSciNet  Google Scholar 

  28. Kuo, F.Y., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50(6), 3351–3374 (2012)

    Article  MathSciNet  Google Scholar 

  29. Kuo, F.Y., Schwab, C., Sloan, I.H.: Multi-level quasi-Monte Carlo finite element methods for a class of elliptic PDEs with random coefficients. Found. Comput. Math. 15(2), 411–449 (2015)

    Article  MathSciNet  Google Scholar 

  30. Kuo, F.Y., Sloan, I.H., Wasilkowski, G.W., Woźniakowski, H.: Liberating the dimension. J. Complex. 26(5), 422–454 (2010)

    Article  MathSciNet  Google Scholar 

  31. Kuo, F.Y., Sloan, I.H., Wasilkowski, G.W., Woźniakowski, H.: On decompositions of multivariate functions. Math. Comput. 79(270), 953–966 (2010)

    Article  MathSciNet  Google Scholar 

  32. Nguyens, D.T.P., Nuyens, D.: MDFEM: Multivariate decomposition finite element method for elliptic PDEs with lognormal diffusion coefficients using higher-order QMC and FEM. ESAIM: Math. Model. Numer. Anal. arXiv:1904.13327 (2021) (accepted)

  33. Nistor, V., Schwab, C.: High-order Galerkin approximations for parametric second-order elliptic partial differential equations. Math. Models Methods Appl. Sci. 23(09), 1729–1760 (2013)

    Article  MathSciNet  Google Scholar 

  34. Nuyens, D.: The Magic Point Shop. https://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/. Accessed 15 Apr 2021

  35. Nuyens, D.: QMC4PDE. https://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde/. Accessed 15 Apr 2021

  36. Nuyens, D., Cools, R.: Fast component-by-component construction, a reprise for different kernels. In: Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 373–387. Springer (2006)

  37. Plaskota, L., Wasilkowski, G.W.: Tractability of infinite-dimensional integration in the worst case and randomized settings. J. Complex. 27(6), 505–518 (2011)

    Article  MathSciNet  Google Scholar 

  38. Tucsnak, M., Weiss, G.: Observation and Control for Operator Semigroups. Springer, Berlin (2009)

    Book  Google Scholar 

  39. Wasilkowski, G.W.: On tractability of linear tensor product problems for \(\infty \)-variate classes of functions. J. Complex. 29(5), 351–369 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Nuyens.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, D.T.P., Nuyens, D. MDFEM: Multivariate decomposition finite element method for elliptic PDEs with uniform random diffusion coefficients using higher-order QMC and FEM. Numer. Math. 148, 633–669 (2021). https://doi.org/10.1007/s00211-021-01212-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-021-01212-9

Mathematics Subject Classification

Navigation