Abstract
We study numerical integration of Lipschitz functionals on a Banach space by means of deterministic and randomized (Monte Carlo) algorithms. This quadrature problem is shown to be closely related to the problem of quantization and to the average Kolmogorov widths of the underlying probability measure. In addition to the general setting, we analyze, in particular, integration with respect to Gaussian measures and distributions of diffusion processes. We derive lower bounds for the worst case error of every algorithm in terms of its cost, and we present matching upper bounds, up to logarithms, and corresponding almost optimal algorithms. As auxiliary results, we determine the asymptotic behavior of quantization numbers and Kolmogorov widths for diffusion processes.
Similar content being viewed by others
References
A. Ayache, M.S. Taqqu, Rate optimality of wavelet series approximations of fractional Brownian motion, J. Fourier Anal. Appl. 9, 451–471 (2003).
N.S. Bakhvalov, On approximate computation of integrals, Vestnik MGV, Ser. Math. Mech. Astron. Phys. Chem. 4, 3–18 (1959) (in Russian).
N.S. Bakhvalov, On the optimality of linear methods for operator approximation in convex classes of functions, USSR Comput. Math. Math. Phys. 11, 244–249 (1971).
V. Bally, D. Talay, The law of the Euler scheme for stochastic differential equations, I: Convergence rate of the distribution function, Probab. Theory Relat. Fields 104, 43–60 (1996).
E. Belinsky, W. Linde, Small ball probabilities of fractional Brownian sheets via fractional integration operators, J. Theor. Probab. 15, 589–612 (2002).
N. Bouleau, D. Lépingle, Numerical Methods for Stochastic Processes (Wiley, New York, 1994).
G. Chen, G. Fang, Probabilistic and average widths of multivariate Sobolev spaces with mixed derivative equipped with the Gaussian measure, J. Complex. 20, 858–875 (2004).
E. Csáki, On small values of the square integral of a multiparameter Wiener process, in Statistics and Probability, ed. by J. Mogyorodi, I. Vincze, W. Wertz (Reidel, Dordrecht, 1984), pp. 19–26.
J. Creutzig, Approximation of Gaussian random vectors in Banach spaces, Ph.D. Dissertation, Universität Jena, 2002.
S. Dereich, High resolution coding of stochastic processes and small ball probabilities. Ph.D. Dissertation, TU Berlin, 2003.
S. Dereich, The coding complexity of diffusion processes under supremum norm distortion, Stoch. Process. Appl. 118(6), 917–937 (2007). doi:10.1016/j.spa.2007.07.003.
S. Dereich, The coding complexity of diffusion processes under L p[0,1]-norm distortion, Stoch. Process. Appl. 118(6), 938–951 (2007). doi:10.1016/j.spa.2007.07.002.
S. Dereich, M. Scheutzow, High-resolution quantization and entropy coding for fractional Brownian motion, Electron. J. Probab. 11, 700–722 (2005).
S. Dereich, F. Fehringer, A. Matoussi, M. Scheutzow, On the link between small ball probabilities and the quantization problem, J. Theor. Probab. 16, 249–265 (2003).
K. Dzhaparidze, H. van Zanten, Optimality of an explicit series expansion of the fractional Brownian sheet, Stat. Probab. Lett. 71, 295–301 (2005).
J.A. Fill, F. Torcaso, Asymptotic analysis via Mellin transforms for small deviations in L 2-norm of integrated Brownian sheets, Probab. Theory Relat. Fields 130, 259–288 (2004).
M.B. Giles, Multi-level Monte Carlo path simulation, Report NA-06/03, Oxford Univ. Computing Lab. Oper. Res. (2006, to appear).
S. Graf, H. Luschgy, Foundations of Quantization for Probability Distributions, Lecture Notes in Math., vol. 1730 (Springer, Berlin, 2000).
R.M. Gray, D.L. Neuhoff, P.C. Shields, A generalization of Ornstein’s \(\overline{d}\) distance with applications to information theory, Ann. Appl. Probab. 3, 315–328 (1975).
S. Heinrich, Monte Carlo complexity of global solution of integral equations, J. Complex. 14, 151–175 (1998).
S. Heinrich, Multilevel Monte Carlo methods, in Large Scale Scientific Computing, ed. by S. Margenov, J. Wasniewski, P. Yalamov, Lecture Notes in Comp. Sci., vol. 2179 (Springer, Berlin, 2001), pp. 58–67.
S. Heinrich, E. Sindambiwe, Monte Carlo complexity of parametric integration, J. Complex. 15, 317–341 (1999).
J.-P. Kahane, Some Random Series of Functions (Cambridge Univ. Press, Cambridge, 1993).
L.V. Kantorovich, G.S. Rubinstein, On a space of completely additive functions, Vestnik Leningrad Univ. Ser. Mat. Astron. Phys. 2 13(7), 52–59 (1958) (in Russian).
A. Kebaier, Statistical Romberg extrapolation: A new variance reduction method and applications to option pricing, Ann. Appl. Probab. 15, 2681–2705 (2005).
T. Kühn, W. Linde, Optimal series representation of fractional Brownian sheets, Bernoulli 8, 669–696 (2002).
J. Kuelbs, W.V. Li, Shao, Q.M., Small ball estimates for fractional Brownian motion under Hölder norm and Chung’s functional LIL, J. Theor. Probab. 8, 361–386 (1995).
W.V. Li, Q.-M. Shao, Small ball estimates for Gaussian processes under the Sobolev norm, J. Theor. Probab. 12, 699–720 (1999).
W.V. Li, Q.-M. Shao, Gaussian processes: Inequalities, small ball probabilities and applications, in Stochastic Processes: Theory and Methods, ed. by D.N. Shanbhag, C.R. Rao, Handbook of Statist., vol. 19 (North-Holland, Amsterdam, 2001), pp. 533–597.
H. Luschgy, G. Pagès, Sharp asymptotics of the functional quantization problem for Gaussian processes, Ann. Appl. Probab. 32, 1574–1599 (2004).
H. Luschgy, G. Pagès, Functional quantization of a class of Brownian diffusion: A constructive approach, Stoch. Process. Appl. 116, 310–336 (2006).
V. Maiorov, Widths of spaces endowed with a Gaussian measure, Russ. Acad. Sci. Dokl. Math. 45, 305–309 (1992).
V. Maiorov, Average n-widths of the Wiener space in the L ∞-norm, J. Complex. 9, 222–230 (1993).
P. Mathé, s-numbers in information-based complexity, J. Complex. 6, 41–66 (1990).
A.S. Nemirovsky, D.B. Yudin, Problem Complexity and Method Efficiency in Optimization (Wiley, New York, 1983).
E. Novak, Deterministic and Stochastic Error Bounds in Numerical Analysis, Lecture Notes in Math., vol. 1349 (Springer, Berlin, 1988).
G. Pagès, J. Printems, Functional quantization for numerics with an application to option pricing, Monte Carlo Methods Appl. 11, 407–446 (2005).
S.T. Rachev, Probability Metrics and the Stability of Stochastic Models (Wiley, Chichester, 1991).
K. Ritter, Average-Case Analysis of Numerical Problems, Lecture Notes in Math., vol. 1733 (Springer, Berlin, 2000).
T. Sakai, Riemannian Geometry, Trans. Math. Monogr., vol. 149 (AMS, Providence, 1996).
S.A. Smolyak, On optimal restoration of functions and functionals of them, Candidate Dissertation, Moscow State University, 1965 (in Russian).
D. Talay, L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations, Stoch. Anal. Appl. 8, 483–509 (1990).
J.F. Traub, G.W. Wasilkowski, H. Woźniakowski, Information-Based Complexity (Academic, New York, 1988).
G.W. Wasilkowski, Randomization for continuous problems, J. Complex. 5, 195–218 (1989).
G.W. Wasilkowski, H. Woźniakowski, On tractability of path integration, J. Math. Phys. 37, 2071–2088 (1996).
G.W. Wasilkowski, H. Woźniakowski, Complexity of weighted approximation over ℝd, J. Complex. 17, 722–740 (2001).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Arieh Iserles.
Rights and permissions
About this article
Cite this article
Creutzig, J., Dereich, S., Müller-Gronbach, T. et al. Infinite-Dimensional Quadrature and Approximation of Distributions. Found Comput Math 9, 391–429 (2009). https://doi.org/10.1007/s10208-008-9029-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10208-008-9029-x
Keywords
- Quadrature problem
- Randomized algorithm
- Minimal error
- Wasserstein distance
- Functional quantization
- Average Kolmogorov width
- Multilevel Monte Carlo algorithm