[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Efficient HEVC Encoding to Meet Bitrate and PSNR Requirements Using Parametric Modeling

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Video is extensively used in everyday applications and services by heterogeneous users. High-definition video information corresponds to high-data-rate representation. Video coding scalability has an effect on bitrate requirement and peak signal-to-noise ratio (PSNR). However, the spatial information (SI) and temporal information (TI), that are inherent properties of the video, need to be maintained for the full-high-definition videos while performing scalably encoding using high-efficiency video coding (HEVC) standard. In this paper, we have established an empirical relationship of SI, TI, PSNR, and bitrate with quantization parameter (QP). Based on this study, parametric models have been derived that achieve correlation accuracy of at least \(99.18\%\). An optimization algorithm has been developed to find the best QP to achieve the highest PSNR and the least bitrate while maintaining SI and TI during the scalable transcoding of the video. Furthermore, the algorithmic architecture calculates the optimized QP that meets the heterogeneous user-end specification of minimum PSNR and maximum bitrate. The proposed architecture consumes low power and energy of 147 microwatts and 0.186 picojoules, respectively, and therefore, it can be integrated in an HEVC encoder for portable HEVC-compliant consumer electronic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Al-Barwani, E. Edirisinghe, A machine learning based framework for parameter based multi-objective optimisation of a H. 265 video CODEC, in Proceedings of IEEE Future Technologies Conference (FTC), San Francisco, CA, USA (2016), pp. 553–559

  2. L. Anegekuh, L. Sun, E. Jammeh, I.H. Mkwawa, E. Ifeachor, Content-based video quality prediction for HEVC encoded videos streamed over packet networks. IEEE Trans. Multimed. 17(8), 1323–1334 (2015)

    Article  Google Scholar 

  3. N. Barman, E. Jammeh, S.A. Ghorashi, M.G. Martini, No-reference video quality estimation based on machine learning for passive gaming video streaming applications. IEEE Access 7, 74511–74527 (2019)

    Article  Google Scholar 

  4. N. Barman, N. Khan, M.G. Martini, Analysis of spatial and temporal information variation for 10-bit and 8-bit video sequences, in Proceedings of IEEE 24th International Workshop on Computer-Aided Modeling Analysis and Design of Communication Links and Networks (CAMAD), Limassol, Cyprus (2019), pp. 1–6

  5. B. Biswas, R. Mukherjee, I. Chakrabarti, P.K. Dutta, A.K. Ray, A high-Speed VLSI architecture for motion estimation using modified adaptive rood pattern search algorithm. Circuits Syst. Signal Process. 37(10), 4548–4567 (2018)

    Article  Google Scholar 

  6. F. Bossen, D. Flynn, K. Sharman, K. Suehring, HM 16.18 Software Manual, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO. Technical report, IEC JTC1/SC29/WG11, JCTVC-Software Manual (2018)

  7. J.Y. Chen, J.E. Thropp, Review of low frame rate effects on human performance. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 37(6), 1063–1076 (2007)

    Article  Google Scholar 

  8. Z. Cheng, L. Ding, W. Huang, F., Yang, L. Qian, Subjective QoE based HEVC encoder adaptation scheme for multi-user video streaming, in Proceedings of IEEE International Symposium on Broadband Multimedia System and Broadcasting (BMSB), Nara, Japan (2016), pp. 1–6

  9. Z. Cheng, L. Ding, W., Huang, F. Yang, L. Qian, A unified QoE prediction framework for HEVC encoded video streaming over wireless networks, in Proceedings of IEEE International Symposium on Broadband Multimedia System and Broadcasting (BMSB), Cagliari, Italy (2017), pp. 1–6

  10. T. Chiang, Y.Q. Zhang, A new rate control scheme using quadratic rate distortion model. IEEE Trans. Circuits Syst. Video Technol. 7(1), 246–250 (1997)

    Article  Google Scholar 

  11. H. Choi, J. Nam, J. Yoo, D. Sim, Rate control based on unified RQ model for HEVC. ITU-T SG16 Contribution, JCTVC-H0213 (2012), pp. 1–13

  12. H. Choi, J. Yoo, J. Nam, D. Sim, I.V. Bajić, Pixel-wise unified rate-quantization model for multi-level rate control. IEEE J. Sel. Top. Signal Process. 7(6), 1112–1123 (2013)

    Article  Google Scholar 

  13. W. Gao, A multi-objective optimization perspective for joint consideration of video coding quality, in Proceedings of IEEE Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Lanzhou, China (2019), pp. 986–991

  14. W. Gao, S. Kwong, Y. Jia, Joint machine learning and game theory for rate control in high efficiency video coding. IEEE Trans. Image Process. 26(12), 6074–6089 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Garcia, H. Kalva, Subjective evaluation of HEVC and AVC/H. 264 in mobile environments. IEEE Trans. Consum. Electron. 60(1), 116–123 (2014)

    Article  Google Scholar 

  16. D. Ghadiyaram, J. Pan, A.C. Bovik, Learning a continuous-time streaming video QoE model. IEEE Trans. Image Process. 27(5), 2257–2271 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Gong, S. Wan, K. Yang, Y. Yang, B. Li, Rate-distortion-optimization-based quantization parameter cascading technique for random-access configuration in H. 265/HEVC. IEEE Trans. Circuits Syst. Video Technol. 27(6), 1304–1312 (2017)

    Article  Google Scholar 

  18. K. Goswami, D.Y. Lee, J. Kim, S. Jeong, H.Y. Kim, B.G. Kim, Two-step rate distortion optimization algorithm for high efficiency video coding. J. Multimed. Inf. Syst. 4(4), 311–316 (2017)

    Google Scholar 

  19. H. Guo, C. Zhu, S. Li, Y. Gao, Optimal bit allocation at frame level for rate control in HEVC. IEEE Trans. Broadcast. 65(2), 270–281 (2018)

    Article  Google Scholar 

  20. H. Guo, C. Zhu, M. Xu, S. Li, Inter-block dependency-based CTU level rate control for HEVC. IEEE Trans. Broadcast. 66(1), 113–126 (2020)

    Article  Google Scholar 

  21. J. He, E.H. Yang, F. Yang, K. Yang, Adaptive quantization parameter selection for H.265/HEVC by employing inter-frame dependency. IEEE Trans. Circuits Syst. Video Technol. 28(12), 3424–3436 (2018)

    Article  Google Scholar 

  22. A. Ichigaya, Y. Nishida, Required bit rates analysis for a new broadcasting service using HEVC/H. 265. IEEE Trans. Broadcast. 62(2), 417–425 (2016)

    Article  Google Scholar 

  23. ITU-T: ITU-T Recommendation P. 930: principles of a reference impairment system for video. Technical report (1996)

  24. ITU-T: ITU-T Recommendation P.910: subjective video quality assessment methods for multimedia applications. Technical report (2008)

  25. ITU-T: ITU-T Recommendation G. 1070: opinion model for video-telephony applications. Technical report (2012)

  26. ITU-T: ITU-T Recommendation P.1201.1: parametric non-intrusive assessment of audiovisual media streaming quality-lower resolution application area. Technical report (2012)

  27. ITU-T: ITU-T Recommendation P.1202.1: parametric non-intrusive bitstream assessment of video media streaming quality-lower resolution application area. Technical report (2012)

  28. ITU-T: ITU-T Recommendation J.343.1: hybrid-NRe objective perceptual video quality measurement for HDTV and multimedia IP-based video services in the presence of encrypted bitstream data. Technical report (2014)

  29. ITU-T: ITU-T Recommendation P.800.2: mean opinion score interpretation and reporting. Technical report (2016)

  30. N. Jayant, P. Noll, Digital Coding of Waveforms-Principles and Applications to Speech and Video Englewood Cliffs (Prentice-Hall, Upper Saddle River, 1994)

    Google Scholar 

  31. N. Kamaci, Y. Altunbasak, R.M. Mersereau, Frame bit allocation for the H. 264/AVC video coder via Cauchy-density-based rate and distortion models. IEEE Trans. Circuits Syst. Video Technol. 15(8), 994–1006 (2005)

    Article  Google Scholar 

  32. A. Khan, L. Sun, E. Jammeh, E. Ifeachor, Quality of experience-driven adaptation scheme for video applications over wireless networks. IET Commun. 4(11), 1337–1347 (2010)

    Article  Google Scholar 

  33. B.G. Kim, Fast coding unit (CU) determination algorithm for high-efficiency video coding (HEVC) in smart surveillance application. J. Supercomput. 73(3), 1063–1084 (2017)

    Article  Google Scholar 

  34. H.S. Kim, J.H. Lee, C.K. Kim, B.G. Kim, Zoom motion estimation using block-based fast local area scaling. IEEE Trans. Circuits Syst. Video Technol. 22(9), 1280–1291 (2012)

    Article  Google Scholar 

  35. B. Kumar, S.P. Singh, A. Mohan, H.V. Singh, MOS prediction of SPIHT medical images using objective quality parameters, in Proceedings of IEEE International Conference on Signal Processing Systems (ICSPS), Singapore (2009), pp. 219–223

  36. J.H. Lee, C.S. Park, B.G. Kim, D.S. Jun, S.H. Jung, J.S. Choi, Novel fast PU decision algorithm for the HEVC video standard, in Proceedings of IEEE International Conference on Image Processing (ICIP), Melbourne, Australia (2013), pp. 1982–1985

  37. B. Li, H. Li, L. Li, J. Zhang, \(\lambda \) domain rate control algorithm for high efficiency video coding. IEEE Trans. Image Process. 23(9), 3841–3854 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. B. Li, M. Zhou, Y. Zhang, X. Lin, W. Guo, Model parameter estimation for CTU-level rate control in HEVC. IEEE Multimed. 25(3), 79–91 (2018)

    Article  Google Scholar 

  39. L. Li, B. Li, H. Li, C.W. Chen, \(\lambda \)-domain optimal bit allocation algorithm for high efficiency video coding. IEEE Trans. Circuits Syst. Video Technol. 28(1), 130–142 (2018)

    Article  Google Scholar 

  40. L. Li, B. Li, D. Liu, H. Li, \(\lambda \)-domain rate control algorithm for HEVC scalable extension. IEEE Trans. Multimed. 18(10), 2023–2039 (2016)

    Article  Google Scholar 

  41. S. Li, M. Xu, Z. Wang, X. Sun, Optimal bit allocation for CTU level rate control in HEVC. IEEE Trans. Circuits Syst. Video Technol. 27(11), 2409–2424 (2016)

    Article  Google Scholar 

  42. S. Liu, C.C. Kuo, Joint temporal-spatial bit allocation for video coding with dependency. IEEE Trans. Circuits Syst. Video Technol. 15(1), 15–26 (2005)

    Article  Google Scholar 

  43. Y. Liu, L. Song, X. Yang, R. Xie, W. Zhang, Review of ITU-T parametric models for compressed video quality estimation, in Proceedings of IEEE Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Jeju, South Korea (2016), pp. 1–8

  44. P. Lungaro, R. Sjöberg, A.J.F. Valero, A. Mittal, K. Tollmar, Gaze-aware streaming solutions for the next generation of mobile VR experiences. IEEE Trans. Vis. Comput. Graph. 24(4), 1535–1544 (2018)

    Article  Google Scholar 

  45. S. Ma, W. Gao, Y. Lu, Rate-distortion analysis for H. 264/AVC video coding and its application to rate control. IEEE Trans. Circuits Syst. Video Technol. 15(12), 1533–1544 (2005)

    Article  Google Scholar 

  46. Y. Ma, Y. Huang, J. Wang, R. Xie, X. Gu, L. Song, A segment constraint ABR algorithm for HEVC encoder, in Proceedings of IEEE International Symposium on Broadband Multimedia System and Broadcasting (BMSB), Valencia, Spain (2018), pp. 1–5

  47. I. Marzuki, J. Lee, W. Wiratama, D. Sim, Deep convolutional feature-driven rate control for the HEVC encoders. IEEE Access (2021)

  48. MathworksInc.: Curve Fitting Toolbox: User’s Guide (2019). https://www.mathworks.com/help/pdf_doc/curvefit/curvefit.pdf. Accessed 15 Apr 2020

  49. L. Meng, Z. Xia, Video coding parameter optimization based on module inter-relevancy, in Proceedings of IEEE International Conference on Research in Computational Intelligence and Communication Networks(ICCICN), Bhopal, India (2014), pp. 289–294

  50. R. Mukherjee, B. Biswas, I. Chakrabarti, P.K. Dutta, S. Sengupta, A.K. Ray, Speed-area optimized VLSI architecture of hexagonal search algorithm for motion estimation of 512 \(\times \) 512 frames. Circuits Syst. Signal Process. 36(2), 640–657 (2017)

    Article  Google Scholar 

  51. T. Nunome, A video output method for H. 265/HEVC video and audio IP transmission and its QoE, in Proceedings of IEEE International Conference on Telecommunications (ICT), St. Malo, France (2018), pp. 259–263

  52. E. Ong, X. Yang, W. Lin, Z. Lu, S. Yao, Perceptual quality metric for compressed videos, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Philadelphia, USA (2005), pp. 581–584

  53. Z. Pan, X. Yi, Y. Zhang, H. Yuan, F.L. Wang, S. Kwong, Frame-level bit allocation optimization based on video content characteristics for HEVC. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 16(1), 1–20 (2020)

    Article  Google Scholar 

  54. L. Qian, Z. Cheng, Z. Fang, L. Ding, F. Yang, W. Huang, A QoE-driven encoder adaptation scheme for multi-user video streaming in wireless networks. IEEE Trans. Broadcast. 63(1), 20–31 (2017)

    Article  Google Scholar 

  55. J.J. Quinlan, A.H. Zahran, C.J. Sreenan, ALD: adaptive layer distribution for scalable video. Multimed. Syst. 21(5), 465–484 (2015)

    Article  Google Scholar 

  56. A.I. Sallam, E.S.M. El-Rabaie, O.S. Faragallah, Efficient HEVC selective stream encryption using chaotic logistic map. Multimed. Syst. 24(4), 419–437 (2018)

    Article  Google Scholar 

  57. S. Samui, P. Sahu, I. Chakrabarti, S.K. Ghosh, FPGA implementation of a phase-aware single-channel speech enhancement system. Circuits Syst. Signal Process. 36(11), 4688–4715 (2017)

    Article  Google Scholar 

  58. Y. Shen, Y. Liu, N. Qiao, L. Sang, D. Yang, QoE-based evaluation model on video streaming service quality, in Proceedings of IEEE Globecom Workshops (GLOCOMW), Anaheim, CA, USA (2012), pp. 1314–1318

  59. A. Singhadia, P. Bante, I. Chakrabarti, A novel algorithmic approach for efficient realization of 2-D-DCT architecture for HEVC. IEEE Trans. Consum. Electron. 65(3), 264–273 (2019)

    Article  Google Scholar 

  60. A. Singhadia, M. Mamillapalli, I. Chakrabarti, Hardware-efficient 2D-DCT/IDCT architecture for portable HEVC-compliant devices. IEEE Trans. Consum. Electron. 66(3), 203–212 (2020)

    Article  Google Scholar 

  61. A. Singhadia, M. Minhazuddin, M. Mamillapalli, I. Chakrabarti, A fast integrated deblocking filter and sample-adaptive-offset parameter estimation architecture for HEVC. Microprocessors Microsyst. 85, 104317 (2021)

    Article  Google Scholar 

  62. V. Sze, M. Budagavi, G.J. Sullivan, High Efficiency Video Coding: Algorithms and Architectures (Springer, New York, 2014)

    Book  Google Scholar 

  63. S. Tan, S. Ma, S. Wang, S. Wang, W. Gao, Inter-view dependency-based rate control for 3D-HEVC. IEEE Trans. Circuits Syst. Video Technol. 27(2), 337–351 (2017)

    Article  Google Scholar 

  64. T. Tang, L. Li, Rate control for non-uniform video in hevc. J. Vis. Commun. Image Represent. 48, 254–267 (2017)

    Article  Google Scholar 

  65. M.T. Vega, C. Perra, A. Liotta, Resilience of video streaming services to network impairments. IEEE Trans. Broadcast. 64(2), 220–234 (2018)

    Article  Google Scholar 

  66. A. Vetro, H. Sun, Y. Wang, MPEG-4 rate control for multiple video objects. IEEE Trans. Circuits Syst. Video Technol. 9(1), 186–199 (1999)

    Article  Google Scholar 

  67. Video Clarity: White Paper-Advancing To Multi-Scale SSIM, Version 1.0 (2019). https://videoclarity.com/wp-content/uploads/2014/02/Advancing-To-Multi-Scale-SSIM-Final.pdf. Accessed 15 July 2019

  68. H. Wang, S. Kwong, Rate-distortion optimization of rate control for H. 264 with adaptive initial quantization parameter determination. IEEE Trans. Circuits Syst. Video Technol. 18(1), 140–144 (2008)

    Article  Google Scholar 

  69. M. Wang, K.N. Ngan, H. Li, Low-delay rate control for consistent quality using distortion-based Lagrange multiplier. IEEE Trans. Image Process. 25(7), 2943–2955 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  70. S. Wang, S. Ma, S. Wang, D. Zhao, W. Gao, Quadratic \(\rho \)-domain based rate control algorithm for HEVC, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, BC, Canada (2013), pp. 1695–1699

  71. S. Wang, A. Rehman, K. Zeng, J. Wang, Z. Wang, SSIM-motivated two-pass VBR coding for HEVC. IEEE Trans. Circuits Syst. Video Technol. 27(10), 2189–2203 (2016)

    Article  Google Scholar 

  72. Z. Wang, E.P. Simoncelli, A.C. Bovik, Multiscale structural similarity for image quality assessment, in Proceedings of IEEE Asilomar Conference Signals, Systems & Computing (ASCSSC), Pacific Grove, CA, USA (2003), pp. 1398–1402

  73. Y. Yang, L. Shen, H. Yang, P. An, A content-based rate control algorithm for screen content video coding. J. Vis. Commun. Image Represent. 60, 328–338 (2019)

    Article  Google Scholar 

  74. Y. Yang, S. Wan, Y. Gong, K. Yang, Adaptive quantization parameter cascading for random-access prediction in H. 265/HEVC based on dependent RD models, in Proceedings of IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA (2016), pp. 4235–4239

  75. Y.J. Yoon, H. Kim, S.h. Jung, D. Jun, Y. Kim, J.S. Choi, S.J. Ko, A new rate control method for hierarchical video coding in HEVC, in Proceedings of. IEEE International Symposium Broadband Multimedia System and Broadcasting (BMSB), Seoul, South Korea, pp. 1–4 (2012)

  76. S. Zadtootaghaj, N. Barman, S. Schmidt, M.G. Martini, S. Möller, NR-GVQM: a no reference gaming video quality metric, in Proceedings of IEEE International Symposium on Multimedia (ISM), Taichung, Taiwan (2018), pp. 131–134

  77. J. Zhang, S. Kwong, T. Zhao, Z. Pan, CTU-level complexity control for high efficiency video coding. IEEE Trans. Multimed. 20(1), 29–44 (2018)

    Article  Google Scholar 

  78. Z. Zhang, T. Jing, J. Han, Y. Xu, F. Zhang, A new rate control scheme for video coding based on region of interest. IEEE Access 5, 13677–13688 (2017)

    Article  Google Scholar 

  79. T. Zhao, Z. Wang, C.W. Chen, Adaptive quantization parameter cascading in HEVC hierarchical coding. IEEE Trans. Image Process. 25(7), 2997–3009 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  80. M. Zhou, X. Wei, S. Wang, S. Kwong, C.K. Fong, P.H. Wong, W.Y. Yuen, W. Gao, SSIM-based global optimization for CTU-Level rate control in HEVC. IEEE Trans. Multimed. 21(8), 1921–1933 (2019)

    Article  Google Scholar 

  81. I. Zupancic, M. Naccari, M. Mrak, E. Izquierdo, Two-pass rate control for improved quality of experience in UHDTV delivery. IEEE J. Sel. Top. Signal Process. 11(1), 167–179 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Singhadia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhadia, A., Pati, P.S., Singhal, C. et al. Efficient HEVC Encoding to Meet Bitrate and PSNR Requirements Using Parametric Modeling. Circuits Syst Signal Process 41, 4479–4511 (2022). https://doi.org/10.1007/s00034-022-01987-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-01987-8

Keywords

Navigation