Abstract
Video is extensively used in everyday applications and services by heterogeneous users. High-definition video information corresponds to high-data-rate representation. Video coding scalability has an effect on bitrate requirement and peak signal-to-noise ratio (PSNR). However, the spatial information (SI) and temporal information (TI), that are inherent properties of the video, need to be maintained for the full-high-definition videos while performing scalably encoding using high-efficiency video coding (HEVC) standard. In this paper, we have established an empirical relationship of SI, TI, PSNR, and bitrate with quantization parameter (QP). Based on this study, parametric models have been derived that achieve correlation accuracy of at least \(99.18\%\). An optimization algorithm has been developed to find the best QP to achieve the highest PSNR and the least bitrate while maintaining SI and TI during the scalable transcoding of the video. Furthermore, the algorithmic architecture calculates the optimized QP that meets the heterogeneous user-end specification of minimum PSNR and maximum bitrate. The proposed architecture consumes low power and energy of 147 microwatts and 0.186 picojoules, respectively, and therefore, it can be integrated in an HEVC encoder for portable HEVC-compliant consumer electronic products.
Similar content being viewed by others
References
M. Al-Barwani, E. Edirisinghe, A machine learning based framework for parameter based multi-objective optimisation of a H. 265 video CODEC, in Proceedings of IEEE Future Technologies Conference (FTC), San Francisco, CA, USA (2016), pp. 553–559
L. Anegekuh, L. Sun, E. Jammeh, I.H. Mkwawa, E. Ifeachor, Content-based video quality prediction for HEVC encoded videos streamed over packet networks. IEEE Trans. Multimed. 17(8), 1323–1334 (2015)
N. Barman, E. Jammeh, S.A. Ghorashi, M.G. Martini, No-reference video quality estimation based on machine learning for passive gaming video streaming applications. IEEE Access 7, 74511–74527 (2019)
N. Barman, N. Khan, M.G. Martini, Analysis of spatial and temporal information variation for 10-bit and 8-bit video sequences, in Proceedings of IEEE 24th International Workshop on Computer-Aided Modeling Analysis and Design of Communication Links and Networks (CAMAD), Limassol, Cyprus (2019), pp. 1–6
B. Biswas, R. Mukherjee, I. Chakrabarti, P.K. Dutta, A.K. Ray, A high-Speed VLSI architecture for motion estimation using modified adaptive rood pattern search algorithm. Circuits Syst. Signal Process. 37(10), 4548–4567 (2018)
F. Bossen, D. Flynn, K. Sharman, K. Suehring, HM 16.18 Software Manual, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO. Technical report, IEC JTC1/SC29/WG11, JCTVC-Software Manual (2018)
J.Y. Chen, J.E. Thropp, Review of low frame rate effects on human performance. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 37(6), 1063–1076 (2007)
Z. Cheng, L. Ding, W. Huang, F., Yang, L. Qian, Subjective QoE based HEVC encoder adaptation scheme for multi-user video streaming, in Proceedings of IEEE International Symposium on Broadband Multimedia System and Broadcasting (BMSB), Nara, Japan (2016), pp. 1–6
Z. Cheng, L. Ding, W., Huang, F. Yang, L. Qian, A unified QoE prediction framework for HEVC encoded video streaming over wireless networks, in Proceedings of IEEE International Symposium on Broadband Multimedia System and Broadcasting (BMSB), Cagliari, Italy (2017), pp. 1–6
T. Chiang, Y.Q. Zhang, A new rate control scheme using quadratic rate distortion model. IEEE Trans. Circuits Syst. Video Technol. 7(1), 246–250 (1997)
H. Choi, J. Nam, J. Yoo, D. Sim, Rate control based on unified RQ model for HEVC. ITU-T SG16 Contribution, JCTVC-H0213 (2012), pp. 1–13
H. Choi, J. Yoo, J. Nam, D. Sim, I.V. Bajić, Pixel-wise unified rate-quantization model for multi-level rate control. IEEE J. Sel. Top. Signal Process. 7(6), 1112–1123 (2013)
W. Gao, A multi-objective optimization perspective for joint consideration of video coding quality, in Proceedings of IEEE Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Lanzhou, China (2019), pp. 986–991
W. Gao, S. Kwong, Y. Jia, Joint machine learning and game theory for rate control in high efficiency video coding. IEEE Trans. Image Process. 26(12), 6074–6089 (2017)
R. Garcia, H. Kalva, Subjective evaluation of HEVC and AVC/H. 264 in mobile environments. IEEE Trans. Consum. Electron. 60(1), 116–123 (2014)
D. Ghadiyaram, J. Pan, A.C. Bovik, Learning a continuous-time streaming video QoE model. IEEE Trans. Image Process. 27(5), 2257–2271 (2018)
Y. Gong, S. Wan, K. Yang, Y. Yang, B. Li, Rate-distortion-optimization-based quantization parameter cascading technique for random-access configuration in H. 265/HEVC. IEEE Trans. Circuits Syst. Video Technol. 27(6), 1304–1312 (2017)
K. Goswami, D.Y. Lee, J. Kim, S. Jeong, H.Y. Kim, B.G. Kim, Two-step rate distortion optimization algorithm for high efficiency video coding. J. Multimed. Inf. Syst. 4(4), 311–316 (2017)
H. Guo, C. Zhu, S. Li, Y. Gao, Optimal bit allocation at frame level for rate control in HEVC. IEEE Trans. Broadcast. 65(2), 270–281 (2018)
H. Guo, C. Zhu, M. Xu, S. Li, Inter-block dependency-based CTU level rate control for HEVC. IEEE Trans. Broadcast. 66(1), 113–126 (2020)
J. He, E.H. Yang, F. Yang, K. Yang, Adaptive quantization parameter selection for H.265/HEVC by employing inter-frame dependency. IEEE Trans. Circuits Syst. Video Technol. 28(12), 3424–3436 (2018)
A. Ichigaya, Y. Nishida, Required bit rates analysis for a new broadcasting service using HEVC/H. 265. IEEE Trans. Broadcast. 62(2), 417–425 (2016)
ITU-T: ITU-T Recommendation P. 930: principles of a reference impairment system for video. Technical report (1996)
ITU-T: ITU-T Recommendation P.910: subjective video quality assessment methods for multimedia applications. Technical report (2008)
ITU-T: ITU-T Recommendation G. 1070: opinion model for video-telephony applications. Technical report (2012)
ITU-T: ITU-T Recommendation P.1201.1: parametric non-intrusive assessment of audiovisual media streaming quality-lower resolution application area. Technical report (2012)
ITU-T: ITU-T Recommendation P.1202.1: parametric non-intrusive bitstream assessment of video media streaming quality-lower resolution application area. Technical report (2012)
ITU-T: ITU-T Recommendation J.343.1: hybrid-NRe objective perceptual video quality measurement for HDTV and multimedia IP-based video services in the presence of encrypted bitstream data. Technical report (2014)
ITU-T: ITU-T Recommendation P.800.2: mean opinion score interpretation and reporting. Technical report (2016)
N. Jayant, P. Noll, Digital Coding of Waveforms-Principles and Applications to Speech and Video Englewood Cliffs (Prentice-Hall, Upper Saddle River, 1994)
N. Kamaci, Y. Altunbasak, R.M. Mersereau, Frame bit allocation for the H. 264/AVC video coder via Cauchy-density-based rate and distortion models. IEEE Trans. Circuits Syst. Video Technol. 15(8), 994–1006 (2005)
A. Khan, L. Sun, E. Jammeh, E. Ifeachor, Quality of experience-driven adaptation scheme for video applications over wireless networks. IET Commun. 4(11), 1337–1347 (2010)
B.G. Kim, Fast coding unit (CU) determination algorithm for high-efficiency video coding (HEVC) in smart surveillance application. J. Supercomput. 73(3), 1063–1084 (2017)
H.S. Kim, J.H. Lee, C.K. Kim, B.G. Kim, Zoom motion estimation using block-based fast local area scaling. IEEE Trans. Circuits Syst. Video Technol. 22(9), 1280–1291 (2012)
B. Kumar, S.P. Singh, A. Mohan, H.V. Singh, MOS prediction of SPIHT medical images using objective quality parameters, in Proceedings of IEEE International Conference on Signal Processing Systems (ICSPS), Singapore (2009), pp. 219–223
J.H. Lee, C.S. Park, B.G. Kim, D.S. Jun, S.H. Jung, J.S. Choi, Novel fast PU decision algorithm for the HEVC video standard, in Proceedings of IEEE International Conference on Image Processing (ICIP), Melbourne, Australia (2013), pp. 1982–1985
B. Li, H. Li, L. Li, J. Zhang, \(\lambda \) domain rate control algorithm for high efficiency video coding. IEEE Trans. Image Process. 23(9), 3841–3854 (2014)
B. Li, M. Zhou, Y. Zhang, X. Lin, W. Guo, Model parameter estimation for CTU-level rate control in HEVC. IEEE Multimed. 25(3), 79–91 (2018)
L. Li, B. Li, H. Li, C.W. Chen, \(\lambda \)-domain optimal bit allocation algorithm for high efficiency video coding. IEEE Trans. Circuits Syst. Video Technol. 28(1), 130–142 (2018)
L. Li, B. Li, D. Liu, H. Li, \(\lambda \)-domain rate control algorithm for HEVC scalable extension. IEEE Trans. Multimed. 18(10), 2023–2039 (2016)
S. Li, M. Xu, Z. Wang, X. Sun, Optimal bit allocation for CTU level rate control in HEVC. IEEE Trans. Circuits Syst. Video Technol. 27(11), 2409–2424 (2016)
S. Liu, C.C. Kuo, Joint temporal-spatial bit allocation for video coding with dependency. IEEE Trans. Circuits Syst. Video Technol. 15(1), 15–26 (2005)
Y. Liu, L. Song, X. Yang, R. Xie, W. Zhang, Review of ITU-T parametric models for compressed video quality estimation, in Proceedings of IEEE Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Jeju, South Korea (2016), pp. 1–8
P. Lungaro, R. Sjöberg, A.J.F. Valero, A. Mittal, K. Tollmar, Gaze-aware streaming solutions for the next generation of mobile VR experiences. IEEE Trans. Vis. Comput. Graph. 24(4), 1535–1544 (2018)
S. Ma, W. Gao, Y. Lu, Rate-distortion analysis for H. 264/AVC video coding and its application to rate control. IEEE Trans. Circuits Syst. Video Technol. 15(12), 1533–1544 (2005)
Y. Ma, Y. Huang, J. Wang, R. Xie, X. Gu, L. Song, A segment constraint ABR algorithm for HEVC encoder, in Proceedings of IEEE International Symposium on Broadband Multimedia System and Broadcasting (BMSB), Valencia, Spain (2018), pp. 1–5
I. Marzuki, J. Lee, W. Wiratama, D. Sim, Deep convolutional feature-driven rate control for the HEVC encoders. IEEE Access (2021)
MathworksInc.: Curve Fitting Toolbox: User’s Guide (2019). https://www.mathworks.com/help/pdf_doc/curvefit/curvefit.pdf. Accessed 15 Apr 2020
L. Meng, Z. Xia, Video coding parameter optimization based on module inter-relevancy, in Proceedings of IEEE International Conference on Research in Computational Intelligence and Communication Networks(ICCICN), Bhopal, India (2014), pp. 289–294
R. Mukherjee, B. Biswas, I. Chakrabarti, P.K. Dutta, S. Sengupta, A.K. Ray, Speed-area optimized VLSI architecture of hexagonal search algorithm for motion estimation of 512 \(\times \) 512 frames. Circuits Syst. Signal Process. 36(2), 640–657 (2017)
T. Nunome, A video output method for H. 265/HEVC video and audio IP transmission and its QoE, in Proceedings of IEEE International Conference on Telecommunications (ICT), St. Malo, France (2018), pp. 259–263
E. Ong, X. Yang, W. Lin, Z. Lu, S. Yao, Perceptual quality metric for compressed videos, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Philadelphia, USA (2005), pp. 581–584
Z. Pan, X. Yi, Y. Zhang, H. Yuan, F.L. Wang, S. Kwong, Frame-level bit allocation optimization based on video content characteristics for HEVC. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 16(1), 1–20 (2020)
L. Qian, Z. Cheng, Z. Fang, L. Ding, F. Yang, W. Huang, A QoE-driven encoder adaptation scheme for multi-user video streaming in wireless networks. IEEE Trans. Broadcast. 63(1), 20–31 (2017)
J.J. Quinlan, A.H. Zahran, C.J. Sreenan, ALD: adaptive layer distribution for scalable video. Multimed. Syst. 21(5), 465–484 (2015)
A.I. Sallam, E.S.M. El-Rabaie, O.S. Faragallah, Efficient HEVC selective stream encryption using chaotic logistic map. Multimed. Syst. 24(4), 419–437 (2018)
S. Samui, P. Sahu, I. Chakrabarti, S.K. Ghosh, FPGA implementation of a phase-aware single-channel speech enhancement system. Circuits Syst. Signal Process. 36(11), 4688–4715 (2017)
Y. Shen, Y. Liu, N. Qiao, L. Sang, D. Yang, QoE-based evaluation model on video streaming service quality, in Proceedings of IEEE Globecom Workshops (GLOCOMW), Anaheim, CA, USA (2012), pp. 1314–1318
A. Singhadia, P. Bante, I. Chakrabarti, A novel algorithmic approach for efficient realization of 2-D-DCT architecture for HEVC. IEEE Trans. Consum. Electron. 65(3), 264–273 (2019)
A. Singhadia, M. Mamillapalli, I. Chakrabarti, Hardware-efficient 2D-DCT/IDCT architecture for portable HEVC-compliant devices. IEEE Trans. Consum. Electron. 66(3), 203–212 (2020)
A. Singhadia, M. Minhazuddin, M. Mamillapalli, I. Chakrabarti, A fast integrated deblocking filter and sample-adaptive-offset parameter estimation architecture for HEVC. Microprocessors Microsyst. 85, 104317 (2021)
V. Sze, M. Budagavi, G.J. Sullivan, High Efficiency Video Coding: Algorithms and Architectures (Springer, New York, 2014)
S. Tan, S. Ma, S. Wang, S. Wang, W. Gao, Inter-view dependency-based rate control for 3D-HEVC. IEEE Trans. Circuits Syst. Video Technol. 27(2), 337–351 (2017)
T. Tang, L. Li, Rate control for non-uniform video in hevc. J. Vis. Commun. Image Represent. 48, 254–267 (2017)
M.T. Vega, C. Perra, A. Liotta, Resilience of video streaming services to network impairments. IEEE Trans. Broadcast. 64(2), 220–234 (2018)
A. Vetro, H. Sun, Y. Wang, MPEG-4 rate control for multiple video objects. IEEE Trans. Circuits Syst. Video Technol. 9(1), 186–199 (1999)
Video Clarity: White Paper-Advancing To Multi-Scale SSIM, Version 1.0 (2019). https://videoclarity.com/wp-content/uploads/2014/02/Advancing-To-Multi-Scale-SSIM-Final.pdf. Accessed 15 July 2019
H. Wang, S. Kwong, Rate-distortion optimization of rate control for H. 264 with adaptive initial quantization parameter determination. IEEE Trans. Circuits Syst. Video Technol. 18(1), 140–144 (2008)
M. Wang, K.N. Ngan, H. Li, Low-delay rate control for consistent quality using distortion-based Lagrange multiplier. IEEE Trans. Image Process. 25(7), 2943–2955 (2016)
S. Wang, S. Ma, S. Wang, D. Zhao, W. Gao, Quadratic \(\rho \)-domain based rate control algorithm for HEVC, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, BC, Canada (2013), pp. 1695–1699
S. Wang, A. Rehman, K. Zeng, J. Wang, Z. Wang, SSIM-motivated two-pass VBR coding for HEVC. IEEE Trans. Circuits Syst. Video Technol. 27(10), 2189–2203 (2016)
Z. Wang, E.P. Simoncelli, A.C. Bovik, Multiscale structural similarity for image quality assessment, in Proceedings of IEEE Asilomar Conference Signals, Systems & Computing (ASCSSC), Pacific Grove, CA, USA (2003), pp. 1398–1402
Y. Yang, L. Shen, H. Yang, P. An, A content-based rate control algorithm for screen content video coding. J. Vis. Commun. Image Represent. 60, 328–338 (2019)
Y. Yang, S. Wan, Y. Gong, K. Yang, Adaptive quantization parameter cascading for random-access prediction in H. 265/HEVC based on dependent RD models, in Proceedings of IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA (2016), pp. 4235–4239
Y.J. Yoon, H. Kim, S.h. Jung, D. Jun, Y. Kim, J.S. Choi, S.J. Ko, A new rate control method for hierarchical video coding in HEVC, in Proceedings of. IEEE International Symposium Broadband Multimedia System and Broadcasting (BMSB), Seoul, South Korea, pp. 1–4 (2012)
S. Zadtootaghaj, N. Barman, S. Schmidt, M.G. Martini, S. Möller, NR-GVQM: a no reference gaming video quality metric, in Proceedings of IEEE International Symposium on Multimedia (ISM), Taichung, Taiwan (2018), pp. 131–134
J. Zhang, S. Kwong, T. Zhao, Z. Pan, CTU-level complexity control for high efficiency video coding. IEEE Trans. Multimed. 20(1), 29–44 (2018)
Z. Zhang, T. Jing, J. Han, Y. Xu, F. Zhang, A new rate control scheme for video coding based on region of interest. IEEE Access 5, 13677–13688 (2017)
T. Zhao, Z. Wang, C.W. Chen, Adaptive quantization parameter cascading in HEVC hierarchical coding. IEEE Trans. Image Process. 25(7), 2997–3009 (2016)
M. Zhou, X. Wei, S. Wang, S. Kwong, C.K. Fong, P.H. Wong, W.Y. Yuen, W. Gao, SSIM-based global optimization for CTU-Level rate control in HEVC. IEEE Trans. Multimed. 21(8), 1921–1933 (2019)
I. Zupancic, M. Naccari, M. Mrak, E. Izquierdo, Two-pass rate control for improved quality of experience in UHDTV delivery. IEEE J. Sel. Top. Signal Process. 11(1), 167–179 (2017)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Singhadia, A., Pati, P.S., Singhal, C. et al. Efficient HEVC Encoding to Meet Bitrate and PSNR Requirements Using Parametric Modeling. Circuits Syst Signal Process 41, 4479–4511 (2022). https://doi.org/10.1007/s00034-022-01987-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-022-01987-8