[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Cycles in Partially Square Graphs

  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

. In this work we consider finite undirected simple graphs. If G=(V,E) is a graph we denote by α(G) the stability number of G. For any vertex x let N[x] be the union of x and the neighborhood N(x). For each pair of vertices ab of G we associate the set J(a,b) as follows. J(a,b)={uN[a]∩N[b]∣N(u)⊆N[a]∪N[b]}. Given a graph G, its partially squareG * is the graph obtained by adding an edge uv for each pair u,v of vertices of G at distance 2 whenever J(u,v) is not empty. In the case G is a claw-free graph, G * is equal to G 2.

If G is k-connected, we cover the vertices of G by at most ⌈α(G *)/k⌉ cycles, where α(G *) is the stability number of the partially square graph of G. On the other hand we consider in G * conditions on the sum of the degrees. Let G be any 2-connected graph and t be any integer (t≥2). If ∑ x S deg G (x)≥|G|, for every t-stable set SV(G) of G * then the vertex set of G can be covered with t−1 cycles. Different corollaries on covering by paths are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: January 22, 1997 Final version received: February 15, 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ainouche, A., Kouider, M. Cycles in Partially Square Graphs. Graphs Comb 17, 1–9 (2001). https://doi.org/10.1007/PL00007232

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00007232

Keywords

Navigation