[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Coloring decompositions of complete geometric graphs

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

A decomposition of a non-empty simple graph G is a pair [G,P] such that P is a set of non-empty induced subgraphs of G, and every edge of G belongs to exactly one subgraph in P. The chromatic index \(\chi'([G,P])\) of a decomposition [G,P] is the smallest number k for which there exists a k-coloring of the elements of P in such a way that for every element of P all of its edges have the same color, and if two members of P share at least one vertex, then they have different colors. A long standing conjecture of Erdős–Faber–Lovász states that every decomposition \([K_{n}, P]\) of the complete graph \(K_n\) satisfies \(\chi'([K_{n}, P])\leq n\). In this paper we work with geometric graphs, and inspired by this formulation of the conjecture, we introduce the concept of chromatic index of a decomposition of the complete geometric graph. We present bounds for the chromatic index of several types of decompositions when the vertices of the graph are in general position. We also consider the particular case when the vertices are in convex position and present bounds for the chromatic index of a few types of decompositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aichholzer, O., Araujo-Pardo, G., García-Colín, N., Hackl, T., Lara, D., Rubio-Montiel, C., Urrutia, J.: Geometric achromatic and pseudoachromatic indices. Graphs Combin. 32, 431–451 (2016)

    Article  MathSciNet  Google Scholar 

  2. Araujo, G., Dumitrescu, A., Hurtado, F., Noy, M., Urrutia, J.: On the chromatic number of some geometric type Kneser graphs. Comput. Geom. 32, 59–69 (2005)

    Article  MathSciNet  Google Scholar 

  3. G. Araujo-Pardo, C. Rubio-Montiel, and A. Vázquez-Ávila, Note on the Erdős-Faber-Lovász Conjecture: quasigroups and complete digraphs, Ars Combin. (in press)

  4. Araujo-Pardo, G., Vázquez-Ávila, A.: A note on Erdős-Faber-Lovász conjecture and edge coloring of complete graphs. Ars Combin. 129, 287–298 (2016)

    MathSciNet  MATH  Google Scholar 

  5. R. C. Baker, G. Harman, and J. Pintz, The difference between consecutive primes. II, Proc. London Math. Soc. (3), 83 (2001), 532–562

    Article  MathSciNet  Google Scholar 

  6. B. Bukh, A point in many triangles, Electron. J. Combin., 13 (2006), Note 10, 3 pp

  7. J. Cano, L. F. Barba, T. Sakai, and J. Urrutia, On edge-disjoint empty triangles of point sets, in: Thirty Essays on Geometric Graph Theory, Springer (New York, 2013), pp. 83–100

    Google Scholar 

  8. Ceder, J.G.: Generalized sixpartite problems. Bol. Soc. Mat. Mexicana 9, 28–32 (1964)

    MathSciNet  MATH  Google Scholar 

  9. Colbourn, C.J., Colbourn, M.J.: The chromatic index of cyclic Steiner \(2\)-designs. Internat. J. Math. Math. Sci. 5, 823–825 (1982)

    Article  MathSciNet  Google Scholar 

  10. C. J. Colbourn, A. D. Forbes, M. J. Grannell, T. S. Griggs, P. Kaski, P. R. J. Östergård, D. A. Pike, and O. Pottonen, Properties of the Steiner triple systems of order 19, Electron. J. Combin., 17 (2010), Research Paper 98, 30 pp

  11. Colbourn, C.J., Rosa, A.: Triple Systems. The Clarendon Press, Oxford University Press (New York, Oxford Mathematical Monographs (1999)

    MATH  Google Scholar 

  12. Erdős, P.: On sets of distances of \(n\) points. Amer. Math. Monthly 53, 248–250 (1946)

    Article  MathSciNet  Google Scholar 

  13. P. Erdős, Problems and results in graph theory and combinatorial analysis, in: Proc. Fifth Brit. Comb. Conf. (Univ. Aberdeen, Aberdeen, 1975) (Winnipeg, Man.), Utilitas Math. (1976), pp. 169–192

  14. Fabila-Monroy, R., Wood, D.R.: Colouring the triangles determined by a point set. J. Comput. Geom. 3, 86–101 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Hirschfeld, J.W.P.: Projective Geometries over Finite Fields, 2nd edn. The Clarendon Press, Oxford University Press (New York, Oxford Mathematical Monographs (1998)

    MATH  Google Scholar 

  16. Kiss, G., Rubio-Montiel, C.: A note on \(m\)-factorizations of complete multigraphs arising from designs. Ars Math. Contemp. 8, 163–175 (2015)

    Article  MathSciNet  Google Scholar 

  17. Peltesohn, R.: Eine Lösung der beiden Heffterschen Differenzenprobleme. Compositio Math. 6, 251–257 (1939)

    MathSciNet  MATH  Google Scholar 

  18. D. K. Ray-Chaudhuri and R. M. Wilson, Solution of Kirkman's schoolgirl problem, in: Combinatorics (Proc. Sympos. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif., 1968), Amer. Math. Soc. (Providence, RI, 1971), pp. 187–203

  19. Roldán-Pensado, E., Soberón, P.: An extension of a theorem of Yao and Yao. Discrete Comput. Geom. 51, 285–299 (2014)

    Article  MathSciNet  Google Scholar 

  20. D. Romero and F. Alonso-Pecina, The Erdős–Faber–Lovász conjecture is true for \({n\le 12}\), Discrete Math. Algorithms Appl., 6 (2014), 1450039, 5 pp

    Article  Google Scholar 

  21. Romero, D., Sánchez-Arroyo, A.: Adding evidence to the Erdős-Faber-Lovász Conjecture. Ars Combin. 85, 71–84 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We thank the anonymous referee for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lara.

Additional information

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 734922.

C. Huemer was supported by projects MINECO MTM2015-63791-R and Gen. Cat. DGR 2017SGR1336.

C.Rubio-Montiel was partially supported by a CONACyT-México Postdoctoral fellowship, by the National scholarship programme of the Slovak Republic and PAIDI/007/19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huemer, C., Lara, D. & Rubio-Montiel, C. Coloring decompositions of complete geometric graphs. Acta Math. Hungar. 159, 429–446 (2019). https://doi.org/10.1007/s10474-019-00963-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-019-00963-0

Key words and phrases

Navigation