[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Accelerating Predicate Abstraction by Minimum Unsatisfiable Cores Extraction

  • Conference paper
  • First Online:
Theoretical Computer Science (NCTCS 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1352))

Included in the following conference series:

  • 331 Accesses

Abstract

With the growing scale and complexity of software and hardware designs, model checking generally results in the combination explosion of state space. Predicate abstraction is an important technique to solve this problem. The number of refinement iterations will be reduced by extracting the unsatisfiable cores. The smaller unsatisfiable cores are, the more false counterexamples are eliminated. Therefore, a fast algorithm of deriving the minimum unsatisfiable cores is employed in the formal verification tool of hardware. The two optimal algorithms of computing minimum unsatisfiable cores are compared on the instruction Cache unit of a microprocessor. The experimental results showed that the greedy-generic algorithm outperforms the branch-bound algorithm. Furthermore we analyzed that the unsatisfiable cores plays an important role in predicate abstraction, and it can improve the efficiency of model checking.

Supported by the National Natural Science Foundation of China under grant No. 62072464 and U19A2062, and the National Laboratory of Parallel and Distributed Processing Open Fund under grant No. WDZC20205500116.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moskewicz, M.W., Madigan, C.F., Zhao Y., et al.: Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Design Automation Conference, pp. 530–535. ACM, Las Vegas, USA (2001)

    Google Scholar 

  2. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37

    Chapter  Google Scholar 

  3. Jain, H., Kroening, D.: Word level predicate abstraction and refinement for verifying RTL Verilog. In: Proceedings of the 42nd Design Automation Conference, pp. 445–450. ACM, Anaheim, San Diego, USA (2005)

    Google Scholar 

  4. Liffiton, M.H., Mneimneh, M.N., Lynce, I., et al.: A branch and bound algorithm for extracting smallest minimal unsatisfiable formulas. Constraints 14(4), 415–442 (2009)

    Article  MathSciNet  Google Scholar 

  5. Zhang, J.M., Li, S.K., Shen, S.Y.: Algorithms for Deriving minimum unsatisfiable Boolean subformulae. Acta Electronica Sinica 37(3), 56–59 (2009)

    Google Scholar 

  6. Lynce, I., Marques-silva, J.: On computing minimum unsatisfiable cores, In: Proceedings of the 7th International Conference on Theory and Applications of Satisfiability Testing, pp. 305–310. Springer, Vancouver (2004)

    Google Scholar 

  7. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reason. 40, 1–30 (2008)

    Article  MathSciNet  Google Scholar 

  8. Gershman, R., Koifman, M., Strichman, O.: An approach for extracting a small unsatisfiable core. Formal Method Syst. Des. 33(1), 1–27 (2008)

    Article  Google Scholar 

  9. Gregoire, E., Mazuer, B., Piette, C.: Using local search to find MSSes and MUSes. Eur. J. Oper. Res. 199(3), 640–646 (2009)

    Article  Google Scholar 

  10. Nadel, A.: Boosting minimal unsatisfiable core extraction. In: Proceedings of 10th International Conference Formal Methods in Computer Aided Design, pp. 221–229. IEEE, Lugano, Switzerland (2010)

    Google Scholar 

  11. Ryvchin, V., Strichman, O.: Faster extraction of high-level minimal unsatisfiable cores. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 174–187. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21581-0_15

    Chapter  MATH  Google Scholar 

  12. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. J. AI Commun. 25(2), 97–116 (2012)

    Article  MathSciNet  Google Scholar 

  13. Nadel, A., Ryvchin, V., Strichman, O.: Efficient MUS extraction with resolution. In: Proceedings 13th International Conference Formal Methods in Computer Aided Design, pp. 197–200. IEEE, Portland, OR, USA (2013)

    Google Scholar 

  14. Belov, A., Heule, M.J.H., Marques-Silva, J.: MUS extraction using clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 48–57. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_5

    Chapter  Google Scholar 

  15. Bacchus, F., Katsirelos, G.: Using minimal correction sets to more efficiently compute minimal unsatisfiable sets. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 70–86. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3_5

    Chapter  Google Scholar 

  16. Bacchus, F., Katsirelos, G.: Finding a collection of MUSes incrementally. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 35–44. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33954-2_3

    Chapter  MATH  Google Scholar 

  17. Zhao, W., Liffiton, M.H.: Parallelizing partial MUS enumeration. In: Proceedings of IEEE 28th International Conference on Tools with Artificial Intelligence, pp. 464–471. IEEE, San Jose, CA, USA (2016)

    Google Scholar 

  18. Gregoire, E., Izza Y.: Boosting MCSes enumeration. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 1309–1315. ACM, Stockholm, Sweden (2018)

    Google Scholar 

  19. Narodytska, N., Bjorner, N., Marinescu, M.C., et al.: Core-guided minimal correction set and core enumeration. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 1353–1361. ACM, Stockholm, Sweden (2018)

    Google Scholar 

  20. Liu, S., Luo, J.: FMUS2: an efficient algorithm to compute minimal unsatisfiable subsets. In: Fleuriot, J., Wang, D., Calmet, J. (eds.) AISC 2018. LNCS (LNAI), vol. 11110, pp. 104–118. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99957-9_7

    Chapter  Google Scholar 

  21. Luo, J., Liu, S.: Accelerating MUS enumeration by inconsistency graph partitioning. Sci. China Inf. Sci. 62(11), 1–11 (2019). https://doi.org/10.1007/s11432-019-9881-0

    Article  MathSciNet  Google Scholar 

  22. Mencía, C., Kullmann, O., Ignatiev, A., Marques-Silva, J.: On computing the union of MUSes. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 211–221. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_15

    Chapter  MATH  Google Scholar 

  23. Bendík, J., Meel, K.S.: Approximate counting of minimal unsatisfiable subsets. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 439–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_21

    Chapter  Google Scholar 

  24. Jaroslav, B., Cerna, I.: Rotation based MSS/MCS enumeration. In: Proceedings of the 23rd International Conference on Logic for Programming, Artificial Intelligence and Reasoning, pp. 120–137. EasyChair, Alicante, Spain (2020)

    Google Scholar 

  25. Bendík, J., Černá, I.: MUST: minimal unsatisfiable subsets enumeration tool. TACAS 2020. LNCS, vol. 12078, pp. 135–152. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45190-5_8

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Li, T., Ma, K. (2021). Accelerating Predicate Abstraction by Minimum Unsatisfiable Cores Extraction. In: He, K., Zhong, C., Cai, Z., Yin, Y. (eds) Theoretical Computer Science. NCTCS 2020. Communications in Computer and Information Science, vol 1352. Springer, Singapore. https://doi.org/10.1007/978-981-16-1877-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1877-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1876-5

  • Online ISBN: 978-981-16-1877-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics