[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Faster Extraction of High-Level Minimal Unsatisfiable Cores

  • Conference paper
Theory and Applications of Satisfiability Testing - SAT 2011 (SAT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6695))

Abstract

Various verification techniques are based on SAT’s capability to identify a small, or even minimal, unsatisfiable core in case the formula is unsatisfiable, i.e., a small subset of the clauses that are unsatisfiable regardless of the rest of the formula. In most cases it is not the core itself that is being used, rather it is processed further in order to check which clauses from a preknown set of Interesting Constraints (where each constraint is modeled with a conjunction of clauses) participate in the proof. The problem of minimizing the participation of interesting constraints was recently coined high-level minimal unsatisfiable core by Nadel [15]. Two prominent examples of verification techniques that need such small cores are 1) abstraction-refinement model-checking techniques, which use the core in order to identify the state variables that will be used for refinement (smaller number of such variables in the core implies that more state variables can be replaced with free inputs in the abstract model), and 2) assumption minimization, where the goal is to minimize the usage of environment assumptions in the proof, because these assumptions have to be proved separately. We propose seven improvements to the recent solution given in [15], which together result in an overall reduction of 55% in run time and 73% in the size of the resulting core, based on our experiments with hundreds of industrial test cases. The optimized procedure is also better empirically than the assumptions-based minimization technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Efficient generation of unsatisfiability proofs and cores in SAT. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 16–30. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. Journal of Artificial Intelligence Research 22, 319–351 (2004)

    MATH  Google Scholar 

  3. Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatisfiable core extraction. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 36–41. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Desrosiers, C., Galinier, P., Hertz, A., Paroz, S.: Using heuristics to find minimal unsatisfiable subformulas in satisfiability problems. J. Comb. Optim. 18(2), 124–150 (2009)

    Article  MATH  Google Scholar 

  5. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr. Notes Theor. Comput. Sci. 89(4) (2003)

    Google Scholar 

  6. Gershman, R., Koifman, M., Strichman, O.: An approach for extracting a small unsatisfiable core. J. on Formal Methods in System Design, 1–27 (2008)

    Google Scholar 

  7. Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: Proceedings of Design, Automation and Test in Europe Conference and Exhibition (DATE 2003), pp. 886–891 (2003)

    Google Scholar 

  8. Gupta, A.: Learning Abstractions for Model Checking. PhD thesis, Carnegie Mellon University (2006)

    Google Scholar 

  9. Gupta, A., Ganai, M.K., Yang, Z., Ashar, P.: Iterative abstraction using sat-based bmc with proof analysis. In: ICCAD, pp. 416–423 (2003)

    Google Scholar 

  10. Khasidashvili, Z., Kaiss, D., Bustan, D.: A compositional theory for post-reboot observational equivalence checking of hardware. In: FMCAD, pp. 136–143 (2009)

    Google Scholar 

  11. Liffiton, M.H., Mneimneh, M.N., Lynce, I., Andraus, Z.S., Marques-Silva, J., Sakallah, K.A.: A branch and bound algorithm for extracting smallest minimal unsatisfiable subformulas. Constraints 14(4), 415–442 (2009)

    Article  MATH  Google Scholar 

  12. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

    Article  MATH  Google Scholar 

  13. McMillan, K.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. McMillan, K., Amla, N.: Automatic abstraction without counterexamples. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 2–17. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Nadel, A.: Boosting minimal unsatisfiable core extraction. In: Bloem, R., Sharygina, N. (eds.) FMCAD (2010)

    Google Scholar 

  16. Oh, Y., Mneimneh, M.N., Andraus, Z.S., Sakallah, K.A., Markov, I.L.: Amuse: a minimally-unsatisfiable subformula extractor. In: DAC 2004, pp. 518–523 (2004)

    Google Scholar 

  17. Papadimitriou, C.H., Wolfe, D.: The complexity of facets resolved. J. Comput. Syst. Sci. 37(1), 2–13 (1988)

    Article  MATH  Google Scholar 

  18. Ryvchin, V.: Benchmarks + results, http://ie.technion.ac.il/~ofers/sat11.html

  19. Shacham, O., Yorav, K.: On-the-fly resolve trace minimization. In: DAC, pp. 594–599 (2007)

    Google Scholar 

  20. Sörensson, N., Biere, A.: Minimizing learned clauses. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 237–243. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. van Maaren, H., Wieringa, S.: Finding guaranteed mUSes fast. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 291–304. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable boolean formulas. In: Sixth International Conference on Theory and Applications of Satisfiability Testing (SAT 2003), S. Margherita Ligure (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ryvchin, V., Strichman, O. (2011). Faster Extraction of High-Level Minimal Unsatisfiable Cores. In: Sakallah, K.A., Simon, L. (eds) Theory and Applications of Satisfiability Testing - SAT 2011. SAT 2011. Lecture Notes in Computer Science, vol 6695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21581-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21581-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21580-3

  • Online ISBN: 978-3-642-21581-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics