Abstract
Various verification techniques are based on SAT’s capability to identify a small, or even minimal, unsatisfiable core in case the formula is unsatisfiable, i.e., a small subset of the clauses that are unsatisfiable regardless of the rest of the formula. In most cases it is not the core itself that is being used, rather it is processed further in order to check which clauses from a preknown set of Interesting Constraints (where each constraint is modeled with a conjunction of clauses) participate in the proof. The problem of minimizing the participation of interesting constraints was recently coined high-level minimal unsatisfiable core by Nadel [15]. Two prominent examples of verification techniques that need such small cores are 1) abstraction-refinement model-checking techniques, which use the core in order to identify the state variables that will be used for refinement (smaller number of such variables in the core implies that more state variables can be replaced with free inputs in the abstract model), and 2) assumption minimization, where the goal is to minimize the usage of environment assumptions in the proof, because these assumptions have to be proved separately. We propose seven improvements to the recent solution given in [15], which together result in an overall reduction of 55% in run time and 73% in the size of the resulting core, based on our experiments with hundreds of industrial test cases. The optimized procedure is also better empirically than the assumptions-based minimization technique.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Efficient generation of unsatisfiability proofs and cores in SAT. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 16–30. Springer, Heidelberg (2008)
Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. Journal of Artificial Intelligence Research 22, 319–351 (2004)
Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatisfiable core extraction. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 36–41. Springer, Heidelberg (2006)
Desrosiers, C., Galinier, P., Hertz, A., Paroz, S.: Using heuristics to find minimal unsatisfiable subformulas in satisfiability problems. J. Comb. Optim. 18(2), 124–150 (2009)
Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr. Notes Theor. Comput. Sci. 89(4) (2003)
Gershman, R., Koifman, M., Strichman, O.: An approach for extracting a small unsatisfiable core. J. on Formal Methods in System Design, 1–27 (2008)
Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: Proceedings of Design, Automation and Test in Europe Conference and Exhibition (DATE 2003), pp. 886–891 (2003)
Gupta, A.: Learning Abstractions for Model Checking. PhD thesis, Carnegie Mellon University (2006)
Gupta, A., Ganai, M.K., Yang, Z., Ashar, P.: Iterative abstraction using sat-based bmc with proof analysis. In: ICCAD, pp. 416–423 (2003)
Khasidashvili, Z., Kaiss, D., Bustan, D.: A compositional theory for post-reboot observational equivalence checking of hardware. In: FMCAD, pp. 136–143 (2009)
Liffiton, M.H., Mneimneh, M.N., Lynce, I., Andraus, Z.S., Marques-Silva, J., Sakallah, K.A.: A branch and bound algorithm for extracting smallest minimal unsatisfiable subformulas. Constraints 14(4), 415–442 (2009)
Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)
McMillan, K.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)
McMillan, K., Amla, N.: Automatic abstraction without counterexamples. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 2–17. Springer, Heidelberg (2003)
Nadel, A.: Boosting minimal unsatisfiable core extraction. In: Bloem, R., Sharygina, N. (eds.) FMCAD (2010)
Oh, Y., Mneimneh, M.N., Andraus, Z.S., Sakallah, K.A., Markov, I.L.: Amuse: a minimally-unsatisfiable subformula extractor. In: DAC 2004, pp. 518–523 (2004)
Papadimitriou, C.H., Wolfe, D.: The complexity of facets resolved. J. Comput. Syst. Sci. 37(1), 2–13 (1988)
Ryvchin, V.: Benchmarks + results, http://ie.technion.ac.il/~ofers/sat11.html
Shacham, O., Yorav, K.: On-the-fly resolve trace minimization. In: DAC, pp. 594–599 (2007)
Sörensson, N., Biere, A.: Minimizing learned clauses. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 237–243. Springer, Heidelberg (2009)
van Maaren, H., Wieringa, S.: Finding guaranteed mUSes fast. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 291–304. Springer, Heidelberg (2008)
Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable boolean formulas. In: Sixth International Conference on Theory and Applications of Satisfiability Testing (SAT 2003), S. Margherita Ligure (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ryvchin, V., Strichman, O. (2011). Faster Extraction of High-Level Minimal Unsatisfiable Cores. In: Sakallah, K.A., Simon, L. (eds) Theory and Applications of Satisfiability Testing - SAT 2011. SAT 2011. Lecture Notes in Computer Science, vol 6695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21581-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-21581-0_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21580-3
Online ISBN: 978-3-642-21581-0
eBook Packages: Computer ScienceComputer Science (R0)