Abstract
Network path estimation is the problem of finding the best paths between two devices. However, the underpinning communication network information is heterogeneous and derived from disparate sources. Knowledge representation can bridge this gap; however, duplicates, data quality, and reliability issues across the sources raise the need to capture context information. One option is to use RDF quadruples. However, reasoning over such context-aware statements is not trivial; it requires reasoning rules specific to the communication network domain. This paper proposes a method to reason over contextualized statements to improve network path estimation for cybersecurity and cyber-situational awareness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Note that the network interface entities of C1-ADL-PC3 are also duplicated across the GraphSources.
- 3.
Note that for such network data sources, exact time matches are rare and cannot be reasonably expected.
References
Laštovička, M., Čeleda, P.: Situational awareness: detecting critical dependencies and devices in a network. In: Tuncer, D., Koch, R., Badonnel, R., Stiller, B. (eds.) Security of Networks and Services in An All-Connected World. AIMS 2017. Lecture Notes in Computer Science, vol. 10356. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60774-0_17
Sikos, L.F.: OWL ontologies in cybersecurity: conceptual modeling of cyber-knowledge. In: Sikos, L.F. (ed.) AI in Cybersecurity, pp. 1–17. Springer, Cham, Switzerland (2018). https://doi.org/10.1007/978-3-319-98842-9_1
Sikos, L.F., Stumptner, M., Mayer, W., Howard, C., Voigt, S., Philp, D.: Representing network knowledge using provenance-aware formalisms for cyber-situational awareness. Procedia Comput. Sci. 126, 29–38 (2018). https://doi.org/10.1016/j.procs.2018.07.206
Sikos, L.F., Stumptner, M., Mayer, W., Howard, C., Voigt, S., Philp, D.: Automated reasoning over provenance-aware communication network knowledge in support of cyber-situational awareness. In: Liu, W., Giunchiglia, F., Yang, B. (eds.) Knowledge Science, Engineering and Management, pp. 132–143. Springer, Cham, Switzerland (2018). https://doi.org/10.1007/978-3-319-99247-1_12
Junior, D.P., Wille, E.C.G.: FB-APSP: a new efficient algorithm for computing all-pairs shortest-paths. J. Netw. Comput. Appl. 121, 33–43 (2018). https://doi.org/10.1016/j.jnca.2018.07.014
Ye, Q., Wu, B., Wang, B.: Distance distribution and average shortest path length estimation in real-world networks. In: Cao, L., Feng, Y., Zhong, J. (eds.) Advanced Data Mining and Applications. ADMA 2010. Lecture Notes in Computer Science, vol. 6440. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17316-5_32
Sikos, L.F., Stumptner, M., Mayer, W., Howard, C., Voigt, S., Philp, D.: Summarizing network information for cyber-situational awareness via cyber-knowledge integration. In: AOC 2018 Convention, Adelaide, Australia, 30 May 2018
Ali, M.I., Ono, N., Kaysar, M., Shamszaman, Z.U., Pham, T.-L., Gao, F., Griffin, K., Mileo, A.: Real-time data analytics and event detection for IoT-enabled communication systems. J. Web Semant. 42, 19–37 (2017). https://doi.org/10.1016/j.websem.2016.07.001
Benbernou, S., Huang, X., Ouziri, M.: Fusion of Big RDF data: a semantic entity resolution and query rewriting-based inference approach. In: Wang, J., et al. (eds.) Web Information Systems Engineering—WISE 2015. Lecture Notes in Computer Science, vol. 9419. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26187-4_27
Achichi, M., Bellahsene, Z., Ellefi, M.B., Todorov, K.: Linking and disambiguating entities across heterogeneous RDF graphs. J. Web Semant., in press (2019). https://doi.org/10.1016/j.websem.2018.12.003
Zhu, L., Ghasemi-Gol, M., Szekely, P., Galstyan, A., Knoblock, C.A.: Unsupervised entity resolution on multi-type graphs. In: Groth, P., et al. (eds.) The Semantic Web—ISWC 2016. Lecture Notes in Computer Science, vol. 9981. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_39
Cheng, G., Xu, D., Qu, Y.: C3D + P: a summarization method for interactive entity resolution. J. Web Semant. 35(4), 203–213 (2015). https://doi.org/10.1016/j.websem.2015.05.004
Kleb, J., Abecker, A.: Entity reference resolution via spreading activation on RDF graphs. In: Aroyo, L., et al. (eds.) The Semantic Web: Research and Applications. ESWC 2010. Lecture Notes in Computer Science, vol. 6088. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13486-9_11
Kejriwal, M., Miranker, D.P.: An unsupervised instance matcher for schema-free RDF data. J. Web Semant. 35(2), 102–123 (2015). https://doi.org/10.1016/j.websem.2015.07.002
Sikos, L.F., Philp, D., Voigt, S., Howard, C., Stumptner, M., Mayer, W.: Provenance-aware LOD datasets for detecting network inconsistencies. In: First International Workshop on Contextualized Knowledge Graphs (2018 International Semantic Web Conference), Monterey, CA, USA, 8–12 Oct 2018. http://ceur-ws.org/Vol-2317
Gunning, D.: Explainable artificial intelligence (XAI). Defense Advanced Research Projects Agency (DARPA), Nov 2017
Achichi, M., Bellahsene, Z., Ellefi, M.B., Todorov, K.: Linking and disambiguating entities across heterogeneous RDF graphs. J. Web Semant. Available online 2 Jan 2019—In Press (2019). https://doi.org/10.1016/j.websem.2018.12.003
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Philp, D., Chan, N., Sikos, L.F. (2020). Decision Support for Network Path Estimation via Automated Reasoning. In: Czarnowski, I., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies 2019. Smart Innovation, Systems and Technologies, vol 142. Springer, Singapore. https://doi.org/10.1007/978-981-13-8311-3_29
Download citation
DOI: https://doi.org/10.1007/978-981-13-8311-3_29
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-8310-6
Online ISBN: 978-981-13-8311-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)