[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Decision Support for Network Path Estimation via Automated Reasoning

  • Conference paper
  • First Online:
Intelligent Decision Technologies 2019

Abstract

Network path estimation is the problem of finding the best paths between two devices. However, the underpinning communication network information is heterogeneous and derived from disparate sources. Knowledge representation can bridge this gap; however, duplicates, data quality, and reliability issues across the sources raise the need to capture context information. One option is to use RDF quadruples. However, reasoning over such context-aware statements is not trivial; it requires reasoning rules specific to the communication network domain. This paper proposes a method to reason over contextualized statements to improve network path estimation for cybersecurity and cyber-situational awareness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://purl.org/dataset/ispnet/.

  2. 2.

    Note that the network interface entities of C1-ADL-PC3 are also duplicated across the GraphSources.

  3. 3.

    Note that for such network data sources, exact time matches are rare and cannot be reasonably expected.

References

  1. Laštovička, M., Čeleda, P.: Situational awareness: detecting critical dependencies and devices in a network. In: Tuncer, D., Koch, R., Badonnel, R., Stiller, B. (eds.) Security of Networks and Services in An All-Connected World. AIMS 2017. Lecture Notes in Computer Science, vol. 10356. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60774-0_17

    Google Scholar 

  2. Sikos, L.F.: OWL ontologies in cybersecurity: conceptual modeling of cyber-knowledge. In: Sikos, L.F. (ed.) AI in Cybersecurity, pp. 1–17. Springer, Cham, Switzerland (2018). https://doi.org/10.1007/978-3-319-98842-9_1

    Google Scholar 

  3. Sikos, L.F., Stumptner, M., Mayer, W., Howard, C., Voigt, S., Philp, D.: Representing network knowledge using provenance-aware formalisms for cyber-situational awareness. Procedia Comput. Sci. 126, 29–38 (2018). https://doi.org/10.1016/j.procs.2018.07.206

    Article  Google Scholar 

  4. Sikos, L.F., Stumptner, M., Mayer, W., Howard, C., Voigt, S., Philp, D.: Automated reasoning over provenance-aware communication network knowledge in support of cyber-situational awareness. In: Liu, W., Giunchiglia, F., Yang, B. (eds.) Knowledge Science, Engineering and Management, pp. 132–143. Springer, Cham, Switzerland (2018). https://doi.org/10.1007/978-3-319-99247-1_12

    Chapter  Google Scholar 

  5. Junior, D.P., Wille, E.C.G.: FB-APSP: a new efficient algorithm for computing all-pairs shortest-paths. J. Netw. Comput. Appl. 121, 33–43 (2018). https://doi.org/10.1016/j.jnca.2018.07.014

    Article  Google Scholar 

  6. Ye, Q., Wu, B., Wang, B.: Distance distribution and average shortest path length estimation in real-world networks. In: Cao, L., Feng, Y., Zhong, J. (eds.) Advanced Data Mining and Applications. ADMA 2010. Lecture Notes in Computer Science, vol. 6440. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17316-5_32

    Chapter  Google Scholar 

  7. Sikos, L.F., Stumptner, M., Mayer, W., Howard, C., Voigt, S., Philp, D.: Summarizing network information for cyber-situational awareness via cyber-knowledge integration. In: AOC 2018 Convention, Adelaide, Australia, 30 May 2018

    Google Scholar 

  8. Ali, M.I., Ono, N., Kaysar, M., Shamszaman, Z.U., Pham, T.-L., Gao, F., Griffin, K., Mileo, A.: Real-time data analytics and event detection for IoT-enabled communication systems. J. Web Semant. 42, 19–37 (2017). https://doi.org/10.1016/j.websem.2016.07.001

    Article  Google Scholar 

  9. Benbernou, S., Huang, X., Ouziri, M.: Fusion of Big RDF data: a semantic entity resolution and query rewriting-based inference approach. In: Wang, J., et al. (eds.) Web Information Systems Engineering—WISE 2015. Lecture Notes in Computer Science, vol. 9419. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26187-4_27

    Google Scholar 

  10. Achichi, M., Bellahsene, Z., Ellefi, M.B., Todorov, K.: Linking and disambiguating entities across heterogeneous RDF graphs. J. Web Semant., in press (2019). https://doi.org/10.1016/j.websem.2018.12.003

    Article  Google Scholar 

  11. Zhu, L., Ghasemi-Gol, M., Szekely, P., Galstyan, A., Knoblock, C.A.: Unsupervised entity resolution on multi-type graphs. In: Groth, P., et al. (eds.) The Semantic Web—ISWC 2016. Lecture Notes in Computer Science, vol. 9981. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_39

    Google Scholar 

  12. Cheng, G., Xu, D., Qu, Y.: C3D + P: a summarization method for interactive entity resolution. J. Web Semant. 35(4), 203–213 (2015). https://doi.org/10.1016/j.websem.2015.05.004

    Article  Google Scholar 

  13. Kleb, J., Abecker, A.: Entity reference resolution via spreading activation on RDF graphs. In: Aroyo, L., et al. (eds.) The Semantic Web: Research and Applications. ESWC 2010. Lecture Notes in Computer Science, vol. 6088. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13486-9_11

    Google Scholar 

  14. Kejriwal, M., Miranker, D.P.: An unsupervised instance matcher for schema-free RDF data. J. Web Semant. 35(2), 102–123 (2015). https://doi.org/10.1016/j.websem.2015.07.002

    Article  Google Scholar 

  15. Sikos, L.F., Philp, D., Voigt, S., Howard, C., Stumptner, M., Mayer, W.: Provenance-aware LOD datasets for detecting network inconsistencies. In: First International Workshop on Contextualized Knowledge Graphs (2018 International Semantic Web Conference), Monterey, CA, USA, 8–12 Oct 2018. http://ceur-ws.org/Vol-2317

  16. Gunning, D.: Explainable artificial intelligence (XAI). Defense Advanced Research Projects Agency (DARPA), Nov 2017

    Google Scholar 

  17. Achichi, M., Bellahsene, Z., Ellefi, M.B., Todorov, K.: Linking and disambiguating entities across heterogeneous RDF graphs. J. Web Semant. Available online 2 Jan 2019—In Press (2019). https://doi.org/10.1016/j.websem.2018.12.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean Philp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Philp, D., Chan, N., Sikos, L.F. (2020). Decision Support for Network Path Estimation via Automated Reasoning. In: Czarnowski, I., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies 2019. Smart Innovation, Systems and Technologies, vol 142. Springer, Singapore. https://doi.org/10.1007/978-981-13-8311-3_29

Download citation

Publish with us

Policies and ethics