Abstract
For network analysts, understanding how network devices are interconnected and how information flows around the network is crucial to the cyber-situational awareness required for applications such as proactive network security monitoring. Many heterogeneous data sources are useful for these applications, including router configuration files, routing messages, and open datasets. However, these datasets have interoperability issues, which can be overcome by using formal knowledge representation techniques for network semantics. Formal knowledge representation also enables automated reasoning over statements about network concepts, properties, entities, and relationships, thereby enabling knowledge discovery. This chapter describes formal knowledge representation formalisms to capture the semantics of communication network concepts, their properties, and the relationships between them, in addition to metadata such as data provenance. It also describes how the expressivity of these knowledge representation mechanisms can be increased to represent uncertainty and vagueness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
Routing is the process of selecting network paths to carry network traffic.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
The decidability of a formalism ensures that an inference algorithm will not run into an infinite loop.
- 13.
- 14.
There is usually one-to-one mapping between interfaces and IP addresses.
- 15.
Within a subnet, each IP address is assumed to be unique.
- 16.
- 17.
In a link state routing protocol, each router constructs a map of the connectivity of the network in which it resides.
- 18.
In computer networking, a routing domain is a collection of networked systems that operate common routing protocols and are under the control of a single administrative entity. A given AS may contain multiple routing domains. A routing domain can exist without being an Internet-participating AS.
- 19.
Semantic Web Rule Language.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
References
Vishik C, Balduccini M (2015) Making sense of future cybersecurity technologies: using ontologies for multidisciplinary domain analysis. In: Reimer H, Pohlmann N, Schneider W (eds) ISSE 2015. Springer, Wiesbaden, pp 135–145. https://doi.org/10.1007/978-3-658-10934-9_12
Sikos LF (2014) Web standards: mastering HTML5, CSS3, and XML, 2nd edn. Apress, New York. https://doi.org/10.1007/978-1-4842-0883-0
Sikos LF (2017) Utilizing multimedia ontologies in video scene interpretation via information fusion and automated reasoning. In: Ganzha M, Maciaszek L, Paprzycki M (eds) Proceedings of the 2017 Federated Conference on Computer Science and Information Systems. IEEE, New York, pp 91–98. https://doi.org/10.15439/2017F66
Miksa K, Sabina P, Kasztelnik M (2010) Combining ontologies with domain specific languages: a case study from network configuration software. In: Amann U, Bartho A, Wende C (eds) Reasoning Web: semantic technologies for software engineering. Springer, Heidelberg, pp 99–118. https://doi.org/10.1007/978-3-642-15543-7_4
Abar S, Iwaya Y, Abe T, Kinoshita T (2006) Exploiting domain ontologies and intelligent agents: an automated network management support paradigm. In: Chong I, Kawahara K (eds) Information networking: advances in data communications and wireless networks. Springer, Heidelberg, pp 823–832. https://doi.org/10.1007/11919568_82
Martínez A, Yannuzzi M, López J, Serral-Gracià R, Ramarez W (2015) Applying information extraction for abstracting and automating CLI-based configuration of network devices in heterogeneous environments. In: Laalaoui Y, Bouguila N (eds) Artificial intelligence applications in information and communication technologies. Springer, Cham, pp 167–193. https://doi.org/10.1007/978-3-319-19833-0_8
Quirolgico S, Assis P, Westerinen A, Baskey M, Stokes E (2004) Toward a formal common information model ontology. In: Bussler C, Hong S-k, Jun W, Kaschek R, Kinshuk, Krishnaswamy S, Loke SW, Oberle D, Richards D, Sharma A, Sure Y, Thalheim B (eds) Web information systems–WISE 2004 workshops. Springer, Heidelberg, pp 11–21. https://doi.org/10.1007/978-3-540-30481-4_2
Martínez A, Yannuzzi M, Serral-Gracià R, Ramírez W (2014) Ontology-based information extraction from the configuration command line of network routers. In: Prasath R, O’Reilly P, Kathirvalavakumar T (eds) Mining intelligence and knowledge exploration. Springer, Cham, pp 312–322. https://doi.org/10.1007/978-3-319-13817-6_30
Laskey K, Chandekar S, Paris B-P (2015) A probabilistic ontology for large-scale IP geolocation. In: Laskey KB, Emmons I, Costa PCG, Oltramari A (eds) Proceedings of the Tenth Conference on Semantic Technology for Intelligence, Defense, and Security. RWTH Aachen University, Aachen, pp 18–25. http://ceur-ws.org/Vol-1523/STIDS_2015_T03_Laskey_etal.pdf
ETSI Industry Specification Group (2012) Measurement ontology for IP traffic (MOI); requirements for IP traffic measurement ontologies development. ETSI GS MOI 002 V1.1.1. http://www.etsi.org/deliver/etsi_gs/MOI/001_099/002/01.01.01_60/gs_MOI002v010101p.pdf
Kodeswaran P, Kodeswaran SB, Joshi A, Perich F (2008) Utilizing semantic policies for managing BGP route dissemination. In: IEEE INFOCOM workshops 2008. IEEE, New York, pp 184–187. https://doi.org/10.1109/INFOCOM.2008.4544611
Voigt S, Howard C, Philp D, Penny C (2018) Representing and reasoning about logical network topologies. In: Croitoru M, Marquis P, Rudolph S, Stapleton G (eds) Graph structures for knowledge representation and reasoning. Springer, Cham, pp 73–83. https://doi.org/10.1007/978-3-319-78102-0_4
Sikos LF, Stumptner M, Mayer W, Howard C, Voigt S, Philp D (2018) Representing network knowledge using provenance-aware formalisms for cyber-situational awareness. Procedia Comput Sci 126C:29–38
Sikos LF (2016) RDF-powered semantic video annotation tools with concept mapping to Linked Data for next-generation video indexing: a comprehensive review. Multim Tools Appl 76(12):14437–14460. https://doi.org/10.1007/s11042-016-3705-7
Bizer C, Heath T, Berners-Lee T (2009) Linked data—the story so far. Int J Semant Web Inform Syst 5(3):1–22. https://doi.org/10.4018/jswis.2009081901
Carroll JJ, Bizer C, Hayes P, Stickler P (2005) Named graphs, provenance, and trust. In: Proceedings of the 14th International Conference on World Wide Web. ACM, New York, pp 613–622. https://doi.org/10.1145/1060745.1060835
Sikos LF (2017) Description logics in multimedia reasoning. Springer, Cham. https://doi.org/10.1007/978-3-319-54066-5
Alani MM (2017) Guide to Cisco routers configuration: becoming a router geek. Springer, Cham. https://doi.org/10.1007/978-3-319-54630-8
Systems C (2009) Cisco uBR7200 series universal broadband router software configuration guide. Cisco Press, Indianapolis
Rekhter Y, Li T, Hares S (eds) (2006) A border gateway protocol 4 (BGP-4). https://tools.ietf.org/html/rfc4271
Moy J (ed) (1998) OSPF version 2. https://tools.ietf.org/html/rfc2328
Callon R (ed) (1990) Use of OSI IS-IS for routing in TCP/IP and dual environments. https://tools.ietf.org/html/rfc1195
Hedrick C (ed) (1988) Routing information protocol. https://tools.ietf.org/html/rfc1058
Nakibly G, Gonikman D, Kirshon A, Boneh D (eds) (2012) Persistent OSPF attacks. In: 19th Annual Network and Distributed System Security Conference, San Diego, CA, USA, 5–8 Feb 2012
Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271. https://doi.org/10.1007/BF01386390
Braden R (ed) (1989) Requirements for internet hosts–application and support. https://tools.ietf.org/html/rfc1123
Sikos LF, Stumptner M, Mayer W, Howard C, Voigt S, Philp D (2018) Summarizing network information for cyber-situational awareness via cyber-knowledge integration. In: AOC 2018 Convention, Adelaide, Australia, 28–30 May 2018
Clemente FJG, Calero JMA, Bernabe JB, Perez JMM, Perez GM, Skarmeta AFG (2011) Semantic Web-based management of routing configurations. J Netw Syst Manag 19(2):209–229. https://doi.org/10.1007/s10922-010-9169-6
Udrea O, Recupero DR, Subrahmanian VS (2010) Annotated RDF. ACM Trans Comput Logic 11, Article 10. https://doi.org/10.1145/1656242.1656245
Sahoo SS, Bodenreider O, Hitzler P, Sheth A, Thirunarayan K (2010) Provenance context entity (PaCE): scalable provenance tracking for scientific RDF data. In: Gertz M, Ludascher B (eds) Scientific and statistical database management. Springer, Heidelberg, pp 461–470. https://doi.org/10.1007/978-3-642-13818-8_32
Nguyen V, Bodenreider O, Sheth A (2014) Don’t like RDF reification? Making statements about statements using singleton property. In: Chung C-W (ed) Proceedings of the 23rd International Conference on World Wide Web. ACM, New York, pp 759–770. https://doi.org/10.1145/2566486.2567973
Hartig O, Thompson B (2014) Foundations of an alternative approach to reification in RDF. arXiv:1406.3399
Zimmermann A, Gimenez-Garcea JM (2017) Integrating context of statements within description logics. arXiv:1709.04970
Watkins ER, Nicole DA (2006) Named graphs as a mechanism for reasoning about provenance. In: Zhou X, Li J, Shen HT, Kitsuregawa M, Zhang Y (eds) Frontiers of WWW research and development. Springer, Heidelberg, pp 943–948. https://doi.org/10.1007/11610113_99
Flouris G, Fundulaki I, Pediaditis P, Theoharis Y, Christophides V (2009) Coloring RDF triples to capture provenance. In: Bernstein A, Karger DR, Heath T, Feigenbaum L, Maynard D, Motta E, Thirunarayan K (eds) The Semantic Web–ISWC 2009. Springer, Heidelberg, pp 196–212. https://doi.org/10.1007/978-3-642-04930-9_13
Pediaditis P, Flouris G, Fundulaki I, Christophides V (2009) On explicit provenance management in RDF/S graphs. In: Proceedings of the First Workshop on the Theory and Practice of Provenance, Article 4. USENIX Association, Berkeley
Groth P, Gibson A, Velterop J (2010) The anatomy of a nanopublication. Inform Serv Use 30(1–2):51–56. https://doi.org/10.3233/ISU-2010-0613
Straccia U, Lopes N, Lukácsy G, Polleres A (2010) A general framework for representing and reasoning with annotated semantic web data. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence. AAAI Press, Menlo Park, CA, USA, pp 1437–1442. https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1590/2228
Schüler B, Sizov S, Staab S, Tran DT (2008) Querying for meta knowledge. In: Proceedings of the 17th International Conference on World Wide Web. ACM, New York, pp 625–634. https://doi.org/10.1145/1367497.1367582
Sikos LF (2015) Mastering structured data on the Semantic Web: from HTML5 Microdata to Linked Open Data. Apress, New York. https://doi.org/10.1007/978-1-4842-1049-9
Alexander K, Cyganiak R, Hausenblas M, Zhao J (2009) Describing linked datasets. In: Bizer C, Heath T, Berners-Lee T, Idehen K (eds) Proceedings of the WWW2009 Workshop on Linked Data on the Web. RWTH Aachen University, Aachen. http://ceur-ws.org/Vol-538/ldow2009_paper20.pdf
Akar Z, Halaç TG, Ekinci EE, Dikenelli O (2012) Querying the Web of interlinked datasets using VoID descriptions. In: Bizer C, Heath T, Berners-Lee T, Hausenblas M (eds) Proceedings of the WWW2012 Workshop on Linked Data on the Web. RWTH Aachen University, Aachen. http://ceur-ws.org/Vol-937/ldow2012-paper-06.pdf
Klinov P, Parsia B (2013) Understanding a probabilistic description logic via connections to first-order logic of probability. In: Bobillo F, Costa PCG, d’Amato C, Fanizzi N, Laskey KB, Laskey KJ, Lukasiewicz T, Nickles M, Pool M (eds) Uncertainty reasoning for the Semantic Web II. Springer, Heidelberg, pp 41–58. https://doi.org/10.1007/978-3-642-35975-0_3
Bal-Bourai S, Mokhtari A (2016) \(\pi \)-\(\cal{SROIQ}\)\(^{(\cal{D})}\): possibilistic description logic for uncertain geographic information. In: Fujita H, Ali M, Selamat A, Sasaki J, Kurematsu M (eds) Trends in applied knowledge-based systems and data science. Springer, Cham, pp 818–829. https://doi.org/10.1007/978-3-319-42007-3_69
Sikos LF (2018) Handling uncertainty and vagueness in network knowledge representation for cyberthreat intelligence. In: Proceedings of the 2018 IEEE International Conference on Fuzzy Systems. Curran Associates, Red Hook, NY, USA
Bobillo F, Straccia U (2011) Reasoning with the finitely many-valued Łukasiewicz fuzzy description logic \(\cal{SROIQ}\). Inform Sci 181(4):758–778. https://doi.org/10.1016/j.ins.2010.020
Sikos LF, Stumptner M, Mayer W, Howard C, Voigt S, Philp D (2018) Automated reasoning over provenance-aware communication network knowledge in support of cyber-situational awareness. In: Liu W, Giunchiglia F, Yang B (eds) Knowledge science, engineering, and management. Springer, Cham, pp 132–143. https://doi.org/10.1007/978-3-319-99247-1_12
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Sikos, L.F., Philp, D., Howard, C., Voigt, S., Stumptner, M., Mayer, W. (2019). Knowledge Representation of Network Semantics for Reasoning-Powered Cyber-Situational Awareness. In: Sikos, L. (eds) AI in Cybersecurity. Intelligent Systems Reference Library, vol 151. Springer, Cham. https://doi.org/10.1007/978-3-319-98842-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-98842-9_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98841-2
Online ISBN: 978-3-319-98842-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)