Abstract
Material Reflectance Property Estimation of an object is challenging and it can be used in realistic rendering to make the appearance of objects realistic. Current research focuses primarily on the near-planar objects, with little attention paid to complex-shaped objects. In this paper, we propose a method called MatTrans to estimate geometry and material reflectance properties with Transformer. Specifically, a Transformer Encoder module is designed to fuse local and global information for each material property respectively, and then a cascaded network with residual learning is introduced to estimate the geometry and reflectance properties of any 3D object surface from a single image. Extensive experiments validate that our method brings a clear improvement over previous methods for single-shot capture of spatially varying BRDFs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aittala, M., Weyrich, T., Lehtinen, J., et al.: Two-shot SVBRDF capture for stationary materials. ACM Trans. Graph. 34(4), 110–1 (2015)
Baek, S.H., Jeon, D.S., Tong, X., Kim, M.H.: Simultaneous acquisition of polarimetric SVBRDF and normals. ACM Trans. Graph. 37(6), 1–268 (2018)
Bi, S., Xu, Z., Sunkavalli, K., Kriegman, D., Ramamoorthi, R.: Deep 3d capture: geometry and reflectance from sparse multi-view images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5960–5969 (2020)
Cheng, B., Zhao, J., Duan, F.: Material reflectance property estimation of complex objects using an attention network. In: 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 632–633. IEEE (2022)
Cook, R.L., Torrance, K.E.: A reflectance model for computer graphics. ACM SIGGRAPH Comput. Graph. 15(3), 307–316 (1981)
Cook, R.L., Torrance, K.E.: A reflectance model for computer graphics. ACM Trans. Graph. (ToG) 1(1), 7–24 (1982)
Deschaintre, V., Aittala, M., Durand, F., Drettakis, G., Bousseau, A.: Single-image SVBRDF capture with a rendering-aware deep network. ACM Trans. Graph. (ToG) 37(4), 1–15 (2018)
Dong, Y., Chen, G., Peers, P., Zhang, J., Tong, X.: Appearance-from-motion: recovering spatially varying surface reflectance under unknown lighting. ACM Trans. Graph. (TOG) 33(6), 1–12 (2014)
Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Gao, D., Li, X., Dong, Y., Peers, P., Xu, K., Tong, X.: Deep inverse rendering for high-resolution SVBRDF estimation from an arbitrary number of images. ACM Trans. Graph. 38(4), 1–134 (2019)
Goodfellow, I., et al.: Generative adversarial nets, in ‘advances in neural information processing systems 27’, Curran Associates (2014)
Guo, J., et al.: Highlight-aware two-stream network for single-image SVBRDF acquisition. ACM Trans. Graph. (TOG) 40(4), 1–14 (2021)
Guo, Y., Smith, C., Hašan, M., Sunkavalli, K., Zhao, S.: MaterialGAN: reflectance capture using a generative SVBRDF model. arXiv preprint arXiv:2010.00114 (2020)
Hasselgren, J., Hofmann, N., Munkberg, J.: Shape, light, and material decomposition from images using monte Carlo rendering and denoising. Adv. Neural. Inf. Process. Syst. 35, 22856–22869 (2022)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)
Holroyd, M., Lawrence, J., Zickler, T.: A coaxial optical scanner for synchronous acquisition of 3d geometry and surface reflectance. ACM Trans. Graph. (TOG) 29(4), 1–12 (2010)
Kang, K., Chen, Z., Wang, J., Zhou, K., Wu, H.: Efficient reflectance capture using an autoencoder. ACM Trans. Graph. 37(4), 127–1 (2018)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)
Lagarde, S.: Spherical gaussian approximation for Blinn-Phong, Phong and Fresnel. Random Thoughts Graphics in Games blog, 3 June 2012
Li, X., Dong, Y., Peers, P., Tong, X.: Modeling surface appearance from a single photograph using self-augmented convolutional neural networks. ACM Trans. Graph. (ToG) 36(4), 1–11 (2017)
Li, Z., Shafiei, M., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Inverse rendering for complex indoor scenes: shape, spatially-varying lighting and SVBRDF from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2475–2484 (2020)
Li, Z., Sunkavalli, K., Chandraker, M.: Materials for masses: SVBRDF acquisition with a single mobile phone image. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 74–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_5
Li, Z., Xu, Z., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Learning to reconstruct shape and spatially-varying reflectance from a single image. ACM Trans. Graph. (TOG) 37(6), 1–11 (2018)
Luan, F., Zhao, S., Bala, K., Dong, Z.: Unified shape and SVBRDF recovery using differentiable monte Carlo rendering. In: Computer Graphics Forum, vol. 40, pp. 101–113. Wiley Online Library (2021)
Munkberg, J., et al.: Extracting triangular 3d models, materials, and lighting from images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8280–8290 (2022)
Nam, G., Lee, J.H., Gutierrez, D., Kim, M.H.: Practical SVBRDF acquisition of 3d objects with unstructured flash photography. ACM Trans. Graph. (TOG) 37(6), 1–12 (2018)
Riviere, J., Peers, P., Ghosh, A.: Mobile surface reflectometry. In: ACM SIGGRAPH 2014 Posters, pp. 1–1 (2014)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sang, S., Chandraker, M.: Single-shot neural relighting and SVBRDF estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 85–101. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_6
Schlick, C.: An inexpensive BRDF model for physically-based rendering. In: Computer Graphics Forum, vol. 13, pp. 233–246. Wiley Online Library (1994)
Tunwattanapong, B., et al.: Acquiring reflectance and shape from continuous spherical harmonic illumination. ACM Trans. Graph. (TOG) 32(4), 1–12 (2013)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Vecchio, G., et al.: Controlmat: a controlled generative approach to material capture. arXiv preprint arXiv:2309.01700 (2023)
Vecchio, G., Sortino, R., Palazzo, S., Spampinato, C.: Matfuse: controllable material generation with diffusion models. arXiv preprint arXiv:2308.11408 (2023)
Walter, B., Marschner, S.R., Li, H., Torrance, K.E.: Microfacet models for refraction through rough surfaces. In: Proceedings of the 18th Eurographics Conference on Rendering Techniques, pp. 195–206 (2007)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)
Wu, H., Wang, Z., Zhou, K.: Simultaneous localization and appearance estimation with a consumer RGB-D camera. IEEE Trans. Visual Comput. Graph. 22(8), 2012–2023 (2015)
Xia, R., Dong, Y., Peers, P., Tong, X.: Recovering shape and spatially-varying surface reflectance under unknown illumination. ACM Trans. Graph. (TOG) 35(6), 1–12 (2016)
Xu, Z., Nielsen, J.B., Yu, J., Jensen, H.W., Ramamoorthi, R.: Minimal BRDF sampling for two-shot near-field reflectance acquisition. ACM Trans. Graph. (TOG) 35(6), 1–12 (2016)
Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3836–3847 (2023)
Zhao, Y., Wang, B., Xu, Y., Zeng, Z., Wang, L., Holzschuch, N.: Joint SVBRDF recovery and synthesis from a single image using an unsupervised generative adversarial network. In: EGSR (DL), pp. 53–66 (2020)
Zhou, X., Kalantari, N.K.: Adversarial single-image SVBRDF estimation with hybrid training. In: Computer Graphics Forum, vol. 40, pp. 315–325. Wiley Online Library (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wu, L., Cheng, B., Chao, W., Zhao, J., Duan, F. (2024). MatTrans: Material Reflectance Property Estimation of Complex Objects with Transformer. In: Zhang, FL., Sharf, A. (eds) Computational Visual Media. CVM 2024. Lecture Notes in Computer Science, vol 14592. Springer, Singapore. https://doi.org/10.1007/978-981-97-2095-8_11
Download citation
DOI: https://doi.org/10.1007/978-981-97-2095-8_11
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-2094-1
Online ISBN: 978-981-97-2095-8
eBook Packages: Computer ScienceComputer Science (R0)