[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 285))

Abstract

Orthogonal nonnegative matrix factorization (NMF) is an NMF objective function that enforces orthogonality constraint on its factor. There are two challenges in optimizing this objective function: the first is how to design an algorithm that has convergence guarantee, and the second is how to automatically choose the regularization parameter. In our previous work, we have been able to develop a convergent algorithm for this objective function. However, the second challenge remains unsolved. In this paper, we provide an attempt to answer the second challenge. The proposed method is based on the L-curve approach and has a simple form which is preferable since it introduces only a small additional computational cost. This method transforms the algorithm into nonparametric, and is also extendable to other NMF objective functions as long as the functions are differentiable with respect to the corresponding regularization parameters. Numerical results are then provided to evaluate the feasibility of the method in choosing the appropriate regularization parameter values by utilizing it in cancer clustering tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Paatero, P., Tapper, U.: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126(1994)

    Google Scholar 

  2. Anttila, P., et al.: Source identification of bulk wet deposition in Finland by positive matrix factorization. Atmospheric Environment 29(14), 1705–1718 (1995)

    Google Scholar 

  3. Lee, D., Seung, H.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Google Scholar 

  4. Lee, D., Seung, H.: Algorithms for non-negative matrix factorization. In Proc. Advances in Neural Processing Information Systems, 556–562 (2000)

    Google Scholar 

  5. Xu, W., et al.: Document clustering based on non-negative matrix factorization. In Proc. ACM SIGIR, 267–273 (2003)

    Google Scholar 

  6. Shahnaz, F., et al.: Document clustering using nonnegative matrix factorization. Information Processing & Management 42(2), 373–386 (2006)

    Google Scholar 

  7. Pauca, V.P., et al.: Nonnegative matrix factorization for spectral data analysis. Linear Algebra and Its Applications 416(1), 29–47 (2006)

    Google Scholar 

  8. Jia, S., Qian, Y.: Constrained nonnegative matrix factorization for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing 47(1), 161–173 (2009)

    Google Scholar 

  9. Li, S.Z., et al.: Learning spatially localized, parts-based representation. In Proc. IEEE Comp. Soc. Conf. on Computer Vision and Pattern Recognition, 207–212 (2001)

    Google Scholar 

  10. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. The Journal of Machine Learning Research 5, 1457{1469 (2004)

    Google Scholar 

  11. Wang, D., Lu, H.: On-line learning parts-based representation via incremental orthogonal projective non-negative matrix factorization. Signal Processing 93(6), 1608–1623 (2013)

    Google Scholar 

  12. Pascual-Montano, A., et al.: Nonsmooth nonnegative matrix factorization. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(3), 403{415 (2006)

    Google Scholar 

  13. Gillis, N., Glineur, F.: A multilevel approach for nonnegative matrix factorization. J. Computational and Applied Mathematics 236(7), 1708–1723 (2012)

    Google Scholar 

  14. Cichocki, A., et al.: Extended SMART algorithms for non-negative matrix factorization. LNCS 4029, 548–562, Springer (2006)

    Google Scholar 

  15. Zhou, G., et al.: Online blind source separation using incremental nonnegative matrix factorization with volume constraint. IEEE Transactions on Neural Networks 22(4), 550–560 (2011)

    Google Scholar 

  16. Bertin, N., et al.: Enforcing harmonicity and smoothness in bayesian non-negative matrix factorization applied to polyphonic music transcription. IEEE Transactions on Audio, Speech, and Language Processing 18(3), 538–549 (2010)

    Google Scholar 

  17. Bertrand, A., Moonen, M.: Blind separation of non-negative source signals using multiplicative updates and subspace projection. Signal Processing 90(10), 2877–2890 (2010)

    Google Scholar 

  18. Virtanen, T., et al.: Bayesian extensions to non-negative matrix factorisation for audio signal modelling. In IEEE Int’l Conf. on Acoustics, Speech and Signal Processing, 1825–1828 (2008)

    Google Scholar 

  19. Brunet, J.P., et al.: Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl Acad. Sci. USA 101(12), 4164–4169 (2003)

    Google Scholar 

  20. Gao, Y., Church, G.: Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics 21(21), 3970–3975 (2005)

    Google Scholar 

  21. Kim, H., Park, H.: Sparse non-negative matrix factorizations via alternating non-negativity constrained least squares for microarray data analysis. Bioinformatics 23(12), 1495–1502 (2007)

    Google Scholar 

  22. Devarajan, K.: Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Computational Biology 4(7), e1000029 (2008)

    Google Scholar 

  23. Kim, H., Park, H.: Nonnegative matrix factorization based on alternating non-negativity constrained least squares and active set method. SIAM J. Matrix Anal. Appl. 30(2), 713–730 (2008)

    Google Scholar 

  24. Carmona-Saez, et al.: Biclustering of gene expression data by non-smooth non-negative matrix factorization. BMC Bioinformatics 7(78) (2006)

    Google Scholar 

  25. Inamura, K., et al.: Two subclasses of lung squamous cell carcinoma with different gene expression profiles and prognosis identified by hierarchical clustering and non-negative matrix factorization. Oncogene (24), 7105–7113 (2005)

    Google Scholar 

  26. Fogel, P., et al.: Inferential, robust non-negative matrix factorization analysis of microarray data. Bioinformatics 23(1), 44–49 (2007)

    Google Scholar 

  27. Zheng, C.H., et al.: Tumor clustering using nonnegative matrix factorization with gene selection. IEEE Transactions on Information Technology in Biomedicine 13(4), 599–607 (2009)

    Google Scholar 

  28. Wang, G., et al.: LS-NMF: A modified non-negative matrix factorization algorithm utilizing uncertainty estimates. BMC Bioinformatics 7(175) (2006)

    Google Scholar 

  29. Wang, J.J.Y., et al.: Non-negative matrix factorization by maximizing correntropy for cancer clustering. BMC Bioinformatics 14(107) (2013)

    Google Scholar 

  30. Yuvaraj, N., Vivekanandan, P.: An efficient SVM based tumor classification with symmetry non-negative matrix factorization using gene expression data. In Int’l Conf. on Information Communication and Embedded Systems, 761–768 (2013)

    Google Scholar 

  31. Ding, C., et al.: Orthogonal nonnegative matrix t-factorizations for clustering. In 12th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, 126–135 (2006)

    Google Scholar 

  32. Mirzal, A.: A convergent algorithm for orthogonal nonnegative matrix factorization. To appear in J. Computational and Applied Mathematics.

    Google Scholar 

  33. Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review 34(4), 561–580 (1992)

    Google Scholar 

  34. Lin, C.J.: On the convergence of multiplicative update algorithms for non-negative matrix factorization. IEEE Transactions on Neural Networks 18(6), 1589–1596 (2007)

    Google Scholar 

  35. Lin, C.J.: Projected gradient methods for non-negative matrix factorization. Technical Report ISSTECH-95-013, Department of CS, National Taiwan University (2005)

    Google Scholar 

  36. Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66(336), 846–850 (1971)

    Google Scholar 

  37. Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2(1), 193–218 (1985)

    Google Scholar 

  38. Vinh, N.X., et al.: Information theoretic measures for clustering comparison: Is a correction for chance necessary? In 26th Annual Int’l Conf. on Machine Learning, pp. 1073–1080 (2009)

    Google Scholar 

  39. Souto, M.C.P., et al.: Clustering cancer gene expression data: a comparative study. BMC Bioinformatics 9(497) (2008)

    Google Scholar 

Download references

Acknowledgments

The author would like to thank the reviewers for useful comments. This research was supported by Ministry of Higher Education of Malaysia and Universiti Teknologi Malaysia under Exploratory Research Grant Scheme R.J130000.7828.4L095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andri Mirzal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this paper

Cite this paper

Mirzal, A. (2014). Nonparametric Orthogonal NMF and its Application in Cancer Clustering. In: Herawan, T., Deris, M., Abawajy, J. (eds) Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013). Lecture Notes in Electrical Engineering, vol 285. Springer, Singapore. https://doi.org/10.1007/978-981-4585-18-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-4585-18-7_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4585-17-0

  • Online ISBN: 978-981-4585-18-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics