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Abstract. Orthogonal nonnegative matrix factorization (NMF) is an
NMF objective function that enforces orthogonality constraint on its fac-
tor. There are two challenges in optimizing this objective function: the
first is how to design an algorithm that has convergence guarantee, and
the second is how to automatically choose the regularization parameter.
In our previous work, we have been able to develop a convergent algo-
rithm for this objective function. However, the second challenge remains
unsolved. In this paper, we provide an attempt to answer the second chal-
lenge. The proposed method is based on the L-curve approach and has a
simple form which is preferable since it introduces only a small additional
computational cost. This method transforms the algorithm into nonpara-
metric, and is also extendable to other NMF objective functions as long
as the functions are differentiable with respect to the corresponding reg-
ularization parameters. Numerical results are then provided to evaluate
the feasibility of the method in choosing the appropriate regularization
parameter values by utilizing it in cancer clustering tasks.
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1 Introduction

The nonnegative matrix factorization (NMF) is a recent development in matrix
decomposition and factor analysis. The NMF was first introduced by Paatero &
Anttila [1, 2] and made popular by Lee & Seung [3, 4] in which the latter authors
proposed a simple NMF algorithm and showed its uses in image and document
analysis. The NMF has been successfully applied in many application domains
including document clustering [5, 6], spectral analysis [7, 8], image processing
[9–13], blind source separation [14–18], and cancer clustering and classification
[19–30].

Orthogonal NMF was introduced by Ding et al. [31] to improve clustering
capability of the NMF. There are two challenges in optimizing this objective
function that have not been addressed by the authors: (1) how to design a con-
vergent algorithm, and (2) how to develop a method to automatically choose
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the regularization parameter. In our previous work [32], we have been able to
answer the first challenge. In this paper, we provide an attempt to answer the
second challenge. The proposed method is based on the L-curve approach and
has a simple form which is preferable since it introduces only a small additional
computational cost. Numerical results are then provided to evaluate the feasibil-
ity of the method in choosing the appropriate regularization parameter values
by utilizing it in cancer clustering tasks.

2 Orthogonal NMF

Since there are two factors produced by the NMF, i.e., the basis matrix B and
the coefficient matrix C, orthogonality constraints can be imposed on rows or
columns of B and/or C. Here we only discuss orthogonality constraint on rows
of C, similar results can be obtained for other cases by following the same pro-
cedure. The objective function of orthogonal NMF thus can defined with the
following:

min
B,C

J(B,C) =
1

2
‖A−BC‖2F +

α

2
‖CCT − I‖2F (1)

s.t. B ≥ 0,C ≥ 0,

where the first component of the right hand side part denotes the approximation
error, the second component denotes the orthogonality constraint, and α denotes
the regularization parameter.

An algorithm based on the multiplicative update rules (MUR) [3, 4] for min-
imizing eq. 1 can be derived by utilizing the Karush-Kuhn-Tucker (KKT) opti-
mality conditions. The KKT function of the objective can be defined with:

L(B,C) = J(B,C)− tr
(
ΓBB

T
)− tr

(
ΓCC

)
,

where ΓB ∈ R
M×R
+ and ΓC ∈ R

N×R
+ denote the KKT multipliers, and tr (X)

denotes trace of X. Partial derivatives of L with respect to B and C are:

∇BL(B) = ∇BJ(B)− ΓB, and

∇CL(C) = ∇CJ(C)− ΓT
C,

with

∇BJ(B) = BCCT −ACT , and

∇CJ(C) = BTBC−BTA+ αCCTC− αC.

Then, the KKT optimality conditions can be written with the following:

B∗ ≥ 0, C∗ ≥ 0,

∇BJ(B
∗) = ΓB ≥ 0, ∇CJ(C

∗) = ΓT
C ≥ 0,

∇BJ(B
∗)�B∗ = 0, ∇CJ(C

∗)�C∗ = 0, (2)
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