[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Knowledge Graph Augmentation for Increased Question Answering Accuracy

  • Chapter
  • First Online:
Transactions on Large-Scale Data- and Knowledge-Centered Systems LII

Part of the book series: Lecture Notes in Computer Science ((TLDKS,volume 13470))

  • 340 Accesses

Abstract

This research work presents a new augmentation model for knowledge graphs (KGs) that increases the accuracy of knowledge graph question answering (KGQA) systems. In the current situation, large KGs can represent millions of facts. However, the many nuances of human language mean that the answer to a given question cannot be found, or it is not possible to find always correct results. Frequently, this problem occurs because how the question is formulated does not fit with the information represented in the KG. Therefore, KGQA systems need to be improved to address this problem. We present a suite of augmentation techniques so that a wide variety of KGs can be automatically augmented, thus increasing the chances of finding the correct answer to a question. The first results from an extensive empirical study seem to be promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.wikidata.org/.

  2. 2.

    https://github.com/Accenture/AmpliGraph/.

References

  1. Azad, H.K., Deepak, A.: Query expansion techniques for information retrieval: a survey. Inf. Process. Manag. 56(5), 1698–1735 (2019)

    Article  Google Scholar 

  2. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from question-answer pairs. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP 2013, 18–21 October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A meeting of SIGDAT, a Special Interest Group of the ACL, pp. 1533–1544. ACL (2013)

    Google Scholar 

  3. Cannaviccio, M., Ariemma, L., Barbosa, D., Merialdo, P.: Leveraging wikipedia table schemas for knowledge graph augmentation. In Proceedings of the 21st International Workshop on the Web and Databases, Houston, TX, USA, 10 June 2018, pp. 5:1–5:6. ACM (2018)

    Google Scholar 

  4. Chen, Z., Wang, Y., Zhao, B., Cheng, J., Zhao, X., Duan, Z.: Knowledge graph completion: a review. IEEE Access 8, 192435–192456 (2020)

    Article  Google Scholar 

  5. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

    Article  Google Scholar 

  6. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  7. Diefenbach, D., Tanon, T.P., Singh, K.D., Maret, P.: Question answering benchmarks for wikidata. In: Nikitina, N., Song, D., Fokoue, A., Haase, P. (eds.), Proceedings of the ISWC 2017 Posters & Demonstrations and Industry Tracks co-located with 16th International Semantic Web Conference (ISWC 2017), Vienna, Austria, 23rd - to - 25th October 2017, vol. 1963 of CEUR Workshop Proceedings, CEUR-WS.org (2017)

    Google Scholar 

  8. Dimitrakis, E., Sgontzos, K., Tzitzikas, Y.: A survey on question answering systems over linked data and documents. J. Intell. Inf. Syst. 55(2), 233–259 (2019). https://doi.org/10.1007/s10844-019-00584-7

    Article  Google Scholar 

  9. Feng, S.Y., et al.: A survey of data augmentation approaches for NLP. In: Zong, C., Xia, F., Li, W., Navigli, R. (eds.), Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event, 1–6 August 2021, vol. ACL/IJCNLP 2021 of Findings of ACL, pp. 968–988. Association for Computational Linguistics (2021)

    Google Scholar 

  10. Guo, Q., et al.: A survey on knowledge graph-based recommender systems. IEEE Trans. Knowl. Data Eng. 34(8), 3549–3568 (2020)

    Article  Google Scholar 

  11. Hameurlain, A., Morvan, F.: Big data management in the cloud: evolution or crossroad? In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015-2016. CCIS, vol. 613, pp. 23–38. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34099-9_2

    Chapter  Google Scholar 

  12. Hirschman, L., Gaizauskas, R.J.: Natural language question answering: the view from here. Nat. Lang. Eng. 7(4), 275–300 (2001)

    Article  Google Scholar 

  13. Huang, L., Wu, L., Wang, L.: Knowledge graph-augmented abstractive summarization with semantic-driven cloze reward. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 5–10 July 2020, pp. 5094–5107. Association for Computational Linguistics (2020)

    Google Scholar 

  14. Joshi, M., Choi, E., Weld, D.S., Zettlemoyer, L.: Triviaqa: a large scale distantly supervised challenge dataset for reading comprehension. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1601–1611 (2017)

    Google Scholar 

  15. Kolomiyets, O., Moens, M.: A survey on question answering technology from an information retrieval perspective. Inf. Sci. 181(24), 5412–5434 (2011)

    Article  MathSciNet  Google Scholar 

  16. Krovetz, R.: Viewing morphology as an inference process. Artif. Intell. 118(1–2), 277–294 (2000)

    Article  Google Scholar 

  17. Lan, Y., He, G., Jiang, J., Jiang, J., Zhao, W.X., Wen, J.: A survey on complex knowledge base question answering: methods, challenges and solutions. In: Zhou, Z. (eds.), Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event/Montreal, Canada, 19–27 August 2021, pp. 4483–4491. ijcai.org (2021)

    Google Scholar 

  18. Martinez-Gil, J., Chaves-Gonzalez, J.M.: Semantic similarity controllers: on the trade-off between accuracy and interpretability. Knowl.-Based Syst. 234, 107609 (2021)

    Google Scholar 

  19. Martinez-Gil, J., Freudenthaler, B., Tjoa, A.M.: A general framework for multiple choice question answering based on mutual information and reinforced co-occurrence. Trans. Large Scale Data Knowl. Centered Syst. 42, 91–110 (2019)

    Google Scholar 

  20. Martinez-Gil, J., Mokadem, R., Küng, J., Hameurlain, A.: A novel Neurofuzzy approach for semantic similarity measurement. In: Golfarelli, M., Wrembel, R., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DaWaK 2021. LNCS, vol. 12925, pp. 192–203. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86534-4_18

    Chapter  Google Scholar 

  21. Martinez-Gil, J., Mokadem, R., Morvan, F., Küng, J., Hameurlain, A.: Interpretable entity meta-alignment in knowledge graphs using penalized regression: a case study in the biomedical domain. Prog. Artif. Intell. 11(1), 93–104 (2022)

    Article  Google Scholar 

  22. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013, Proceedings of a meeting held 5–8 December 2013, Lake Tahoe, Nevada, United States, pp. 3111–3119 (2013)

    Google Scholar 

  23. Miller, G.A.: wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  24. Perevalov, A., Diefenbach, D., Usbeck, R., Both, A.: Qald-9-plus: a multilingual dataset for question answering over dbpedia and wikidata translated by native speakers. In: 16th IEEE International Conference on Semantic Computing, ICSC 2022, Laguna Hills, CA, USA, 26–28 January 2022, pp. 229–234. IEEE (2022)

    Google Scholar 

  25. Ploumis, T., Perikos, I., Grivokostopoulou, F., Hatzilygeroudis, I.: A factoid based question answering system based on dependency analysis and wikidata. In: Bourbakis, N.G., Tsihrintzis, G.A., Virvou, M. (eds.), 12th International Conference on Information, Intelligence, Systems & Applications, IISA 2021, Chania Crete, Greece, 12–14 July 2021, pp. 1–7. IEEE (2021)

    Google Scholar 

  26. Shorten, C., Khoshgoftaar, T.M., Furht, B.: Text data augmentation for deep learning. J. Big Data 8(1), 101 (2021)

    Article  Google Scholar 

  27. Steinmetz, N., Sattler, K.: What is in the KGQA benchmark datasets? survey on challenges in datasets for question answering on knowledge graphs. J. Data Semant. 10(3–4), 241–265 (2021)

    Article  Google Scholar 

  28. Xiong, C., Callan, J.: Query expansion with freebase. In: Allan, J., Croft, W.B., de Vries, A.P., Zhai, C. (eds.), Proceedings of the 2015 International Conference on The Theory of Information Retrieval, ICTIR 2015, Northampton, Massachusetts, USA, 27–30 September 2015, pp. 111–120. ACM (2015)

    Google Scholar 

  29. Yu, S., Huang, H., Dao, M.N., Xia, F.: Graph augmentation learning. arXiv preprint arXiv:2203.09020 (2022)

  30. Zhao, Z., Liu, T., Li, S., Li, B., Du, X.: Ngram2vec: learning improved word representations from ngram co-occurrence statistics. In: Palmer, M., Hwa, R., Riedel, S. (eds.), Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, 9–11 September 2017, pp. 244–253. Association for Computational Linguistics (2017)

    Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their help in improving the work. This work has been supported by the Austrian Ministry for Transport, Innovation and Technology, the Federal Ministry of Science, Research and Economy, and the State of Upper Austria through the COMET center SCCH. And by the project FR06/2020 - International Cooperation & Mobility (ICM) of the Austrian Agency for International Cooperation in Education and Research (OeAD-GmbH). We would also thank ‘the French Ministry of Foreign and European Affairs’ and ‘The French Ministry of Higher Education and Research’ which support the Amadeus program 2020 (French-Austrian Hubert Curien Partnership - PHC) Project Number 44086TD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Martinez-Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martinez-Gil, J., Yin, S., Küng, J., Morvan, F. (2022). Knowledge Graph Augmentation for Increased Question Answering Accuracy. In: Hameurlain, A., Tjoa, A.M. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems LII. Lecture Notes in Computer Science(), vol 13470. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-66146-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-66146-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-66145-1

  • Online ISBN: 978-3-662-66146-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics