[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Novel Neurofuzzy Approach for Semantic Similarity Measurement

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12925))

Included in the following conference series:

Abstract

The problem of identifying the degree of semantic similarity between two textual statements automatically has grown in importance in recent times. Its impact on various computer-related domains and recent breakthroughs in neural computation has increased the opportunities for better solutions to be developed. This research takes the research efforts a step further by designing and developing a novel neurofuzzy approach for semantic textual similarity that uses neural networks and fuzzy logics. The fundamental notion is to combine the remarkable capabilities of the current neural models for working with text with the possibilities that fuzzy logic provides for aggregating numerical information in a tailored manner. The results of our experiments suggest that this approach is capable of accurately determining semantic textual similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 43.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 54.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angelov, P.P., Buswell, R.A.: Automatic generation of fuzzy rule-based models from data by genetic algorithms. Inf. Sci. 150(1–2), 17–31 (2003)

    Google Scholar 

  2. Aouicha, M.B., Taieb, M.A.H., Hamadou, A.B.: LWCR: multi-layered Wikipedia representation for computing word relatedness. Neurocomputing 216, 816–843 (2016)

    Article  Google Scholar 

  3. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguistics 5, 135–146 (2017)

    Google Scholar 

  4. Cer, D., et al.: Universal sentence encoder for English. In: Blanco, E., Lu, W. (eds.) Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018: System Demonstrations, Brussels, Belgium, 31 October–4 November 2018, pp. 169–174. Association for Computational Linguistics (2018)

    Google Scholar 

  5. Cilibrasi, R., Vitányi, P.M.B.: The google similarity distance. IEEE Trans. Knowl. Data Eng. 19(3), 370–383 (2007)

    Google Scholar 

  6. Cingolani, P., Alcalá-Fdez, J.: jFuzzyLogic: a java library to design fuzzy logic controllers according to the standard for fuzzy control programming. Int. J. Comput. Intell. Syst. 6(sup1), 61–75 (2013)

    Google Scholar 

  7. Cordón, O.: A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: designing interpretable genetic fuzzy systems. Int. J. Approx. Reason. 52(6), 894–913 (2011)

    Google Scholar 

  8. Dai, B., Li, J., Xu, R.: Multiple positional self-attention network for text classification. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York , NY, USA, 7–12 February 2020, pp. 7610–7617. AAAI Press (2020)

    Google Scholar 

  9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  10. Faruqui, M., Dyer, C.: Improving vector space word representations using multilingual correlation. In: Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2014, Gothenburg, Sweden, 26–30 April 2014, pp. 462–471 (2014)

    Google Scholar 

  11. Harispe, S., Ranwez, S., Janaqi, S., Montmain, J.: Semantic Similarity from Natural Language and Ontology Analysis. Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers (2015)

    Google Scholar 

  12. Huang, E.H., Socher, R., Manning, C.D., Ng, A.Y.: Improving word representations via global context and multiple word prototypes. In: The 50th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference, Jeju Island, Korea, 8–14 July 2012, Volume 1: Long Papers, pp. 873–882 (2012)

    Google Scholar 

  13. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy. In: Proceedings of the 10th Research on Computational Linguistics International Conference, ROCLING 1997, Taipei, Taiwan, August 1997, pp. 19–33 (1997)

    Google Scholar 

  14. Lastra-Díaz, J.J., García-Serrano, A., Batet, M., Fernández, M., Chirigati, F.: HESML: a scalable ontology-based semantic similarity measures library with a set of reproducible experiments and a replication dataset. Inf. Syst. 66, 97–118 (2017)

    Google Scholar 

  15. Lastra-Díaz, J.J., Goikoetxea, J., Taieb, M.A.H., García-Serrano, A., Aouicha, M.B., Agirre, E.: A reproducible survey on word embeddings and ontology-based methods for word similarity: linear combinations outperform the state of the art Eng. Appl. Artif. Intell. 85, 645–665 (2019)

    Google Scholar 

  16. Leacock, C., Chodorow, M.: Combining local context and wordnet similarity for word sense identification. WordNet Electron. Lexical Database 49(2), 265–283 (1998)

    Google Scholar 

  17. Li, Y., Bandar, Z., McLean, D.: An approach for measuring semantic similarity between words using multiple information sources. IEEE Trans. Knowl. Data Eng. 15(4), 871–882 (2003)

    Google Scholar 

  18. Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the Fifteenth International Conference on Machine Learning (ICML 1998), Madison, Wisconsin, USA, 24–27 July 1998, pp. 296–304 (1998)

    Google Scholar 

  19. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Hum.-Comput. Stud. 51(2), 135–147 (1999)

    Article  Google Scholar 

  20. Martinez-Gil, J.: CoTO: a novel approach for fuzzy aggregation of semantic similarity measures. Cogn. Syst. Res. 40, 8–17 (2016)

    Google Scholar 

  21. Martinez-Gil, J.: Semantic similarity aggregators for very short textual expressions: a case study on landmarks and points of interest. J. Intell. Inf. Syst. 53(2), 361–380 (2019). https://doi.org/10.1007/s10844-019-00561-0

  22. Martinez-Gil, J., Chaves-González, J.M.: Automatic design of semantic similarity controllers based on fuzzy logics. Expert Syst. Appl. 131, 45–59 (2019)

    Google Scholar 

  23. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held 5–8 December 2013, Lake Tahoe, Nevada, United States, pp. 3111–3119 (2013)

    Google Scholar 

  24. Miller, G., Charles, W.: Contextual correlates of semantic similarity. Lang. Cogn. Process. 6(1), 1–28 (1991)

    Google Scholar 

  25. Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of NAACL-HLT, pp. 2227–2237 (2018)

    Google Scholar 

  26. Resnik, P.: Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. J. Artif. Intell. Res. 11, 95–130 (1999)

    Google Scholar 

  27. Rutkowski, L., Cpalka, K.: Flexible neuro-fuzzy systems. IEEE Trans. Neural Networks 14(3), 554–574 (2003)

    Google Scholar 

  28. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Austrian Ministry for Transport, Innovation and Technology, the Federal Ministry of Science, Research and Economy, and the State of Upper Austria in the frame of the COMET center SCCH. By the project FR06/2020 by International Cooperation & Mobility (ICM) of the Austrian Agency for International Cooperation in Education and Research (OeAD-GmbH). We would also thank ‘the French Ministry of Foreign and European Affairs’ and ‘The French Ministry of Higher Education and Research’ which support the Amadeus program 2020 (French-Austrian Hubert Curien Partnership – PHC) Project Number 44086TD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Martinez-Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martinez-Gil, J., Mokadem, R., Küng, J., Hameurlain, A. (2021). A Novel Neurofuzzy Approach for Semantic Similarity Measurement. In: Golfarelli, M., Wrembel, R., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2021. Lecture Notes in Computer Science(), vol 12925. Springer, Cham. https://doi.org/10.1007/978-3-030-86534-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86534-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86533-7

  • Online ISBN: 978-3-030-86534-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics