Abstract
Computational Fluid Dynamic calculations are a great assistance for rupture prediction of cerebral aneurysms. This procedure requires a consistent surface, as well as a separation of the blood vessel and aneurysm on this surface to calculate rupture-relevant scores. For this purpose we present an automatic pipeline, which generates a surface model of the vascular tree from angiographies determined by a markerbased watershed segmentation and label post-processing. Aneurysms on the surface model are then detected and segmented using shape-based graph cuts along with anisotropic diffusion and an iterative Support Vector Machine based classification. Aneurysms are correctly detected and segmented in 33 out of 35 test cases. Simulation relevant vessels are successfully segmented without vessel merging in 131 out of 144 test cases, achieving an average dice coefficient of 0.901.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Xiang J, Natarajan SK, Tremmel M, et al. Hemodynamic{morphologic discriminants for intracranial aneurysm rupture. Stroke. 2011;42(1):144–152.
Seo JH, Eslami P, Caplan J, et al. A highly automated computational method for modeling of intracranial aneurysm hemodynamics. Front Physiol. 2018;9:681.
Rahmany I, Laajili S, Khlifa N. Automated computerized method for the detection of unruptured cerebral aneurysms in DSA images. Curr Med Imaging. 2018;14(5):771–777.
Lawonn K, Meuschke M, Wickenhöfer R, et al. A geometric optimization approach for the detection and segmentation of multiple aneurysms. In: Computer Graphics Forum. vol. 38. Wiley Online Library; 2019. p. 413–425.
Pozo Soler J, Frangi AF, Consortium Tn. Database of cerebral artery geometries including aneurysms at the middle cerebral artery bifurcation. The University of Sheffeld; 2017.
CADA challenge dataset; 2020. Available from: https://cada.grandchallenge.org/Dataset/.
Fouard C, Malandain G, Prohaska S, et al. Blockwise processing applied to brain microvascular network study. IEEE Trans Med Imaging. 2006;25(10):1319–1328.
Westin CF. Geometrical diffusion measures for MRI from tensor basis analysis. Proc ISMRM'97. 1997;.
Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell. 2001;23(11):1222–1239.
Koenderink JJ, Van Doorn AJ. Surface shape and curvature scales. Image Vis Comput. 1992;10(8):557–564.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Felde, J., Wagner, T., Lamecker, H., Doenitz, C., Gundelwein, L. (2021). Automatic Vessel Segmentation and Aneurysm Detection Pipeline for Numerical Fluid Analysis. In: Palm, C., Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2021. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-33198-6_57
Download citation
DOI: https://doi.org/10.1007/978-3-658-33198-6_57
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-33197-9
Online ISBN: 978-3-658-33198-6
eBook Packages: Computer Science and Engineering (German Language)