Zusammenfassung
High quality reconstruction with interventional C-arm conebeam computed tomography (CBCT) requires exact geometry information. If the geometry information is corrupted, e. g., by unexpected patient or system movement, the measured signal is misplaced in the backprojection operation. With prolonged acquisition times of interventional C-arm CBCT the likelihood of rigid patient motion increases. To adapt the backprojection operation accordingly, a motion estimation strategy is necessary. Recently, a novel learning-based approach was proposed, capable of compensating motions within the acquisition plane. We extend this method by a CBCT consistency constraint, which was proven to be effcient for motions perpendicular to the acquisition plane. By the synergistic combination of these two measures, in and out-plane motion is well detectable, achieving an average artifact suppression of 93 %. This outperforms the entropy-based state-of-the-art autofocus measure which achieves on average an artifact suppression of 54%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Literatur
Powers WJ, et al. 2015 AHA/ASA focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment. Stroke. 2015;46(10):3020–3035.
Berkhemer ea. A randomized trial of intraarterial treatment for acute ischemic stroke. NEJM. 2015;372(1):11–20.
Leyhe JR, Tsogkas I, Hesse AC, et al. Latest generation of flat detector CT as a peri-interventional diagnostic tool: a comparative study with multidetector CT. JNIS. 2017;9(12):1253–1257.
Psychogios M, Behme D, Schregel K, et al. One-Stop management of acute stroke patients: minimizing door-to-reperfusion times. Stroke. 2017;.
Sisniega A, Stayman JW, Yorkston J, et al. Motion compensation in extremity cone-beam CT using a penalized image sharpness criterion. Phys Med Biol. 2017;62(9):3712.
Wicklein J, Kunze H, Kalender WA, et al. Image features for misalignment correction in medical at-detector CT. Med Phys. 2012;39(8):4918–4931.
Ouadah S, Stayman W, Gang J, et al. Self-Calibration of cone-beam CT geometry using 3D–2D image registration. Phys Med Biol. 2016;61(7):2613.
Frysch R, Rose G. Rigid motion compensation in c-arm CT using consistency measure on projection data. Proc. 2015; p. 298–306.
Preuhs A, Maier A, Manhart M, et al. Symmetry prior for epipolar consistency. IJCARS. 2019;14(9):1541–1551.
Bier B, Aschoff K, Syben C, et al. Detecting anatomical landmarks for motion estimation in weight-bearing imaging of knees. MLMIR. 2018; p. 83–90.
Bier B, Unberath M, Zaech JN, et al. X-Ray-Transform invariant anatomical landmark detection for pelvic trauma surgery. Proc. 2018; p. 55–63.
Preuhs A, Manhart M, Roser P, et al. Image quality assessment for rigid motion compensation. MedNeurIPS. 2019;.
Aichert A, Berger M, Wang J, et al. Epipolar consistency in transmission imaging. TMI. 2015;34(11):2205–19.
Feldkamp L, Davis L, Kress J. Practical cone-beam algorithm. J Opt Soc Am A. 1984;1(6):612–619.
Defrise M, Clack R. A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection. TMI. 1994;13(1):186–195.
Preuhs A, Manhart M, Maier A. Fast epipolar consistency without the need for pseudo matrix inverses. CT-Meeting. 2018; p. 202–205.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Preuhs, A. et al. (2020). Deep Autofocus with Cone-Beam CT Consistency Constraint. In: Tolxdorff, T., Deserno, T., Handels, H., Maier, A., Maier-Hein, K., Palm, C. (eds) Bildverarbeitung für die Medizin 2020. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-29267-6_34
Download citation
DOI: https://doi.org/10.1007/978-3-658-29267-6_34
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-29266-9
Online ISBN: 978-3-658-29267-6
eBook Packages: Computer Science and Engineering (German Language)