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Abstract. High quality reconstruction with interventional C-arm cone-
beam computed tomography (CBCT) requires exact geometry informa-
tion. If the geometry information is corrupted, e.g., by unexpected pa-
tient or system movement, the measured signal is misplaced in the back-
projection operation. With prolonged acquisition times of interventional
C-arm CBCT the likelihood of rigid patient motion increases. To adapt
the backprojection operation accordingly, a motion estimation strategy
is necessary. Recently, a novel learning-based approach was proposed,
capable of compensating motions within the acquisition plane. We ex-
tend this method by a CBCT consistency constraint, which was proven
to be efficient for motions perpendicular to the acquisition plane. By the
synergistic combination of these two measures, in and out-plane motion
is well detectable, achieving an average artifact suppression of 93 %. This
outperforms the entropy-based state-of-the-art autofocus measure which
achieves on average an artifact suppression of 54 %.

1 Introduction

Cone-beam computed tomography (CBCT) using interventional C-arm systems
has gained strong interest since an update of the guidelines of the American
Stroke Association favoring mechanical thrombectomy [1, 2]. The procedure
needs to be guided by an interventional C-arm system capable of 3-D imaging
with soft tissue image quality comparable to helical CT [3]. This allows to
perform diagnostic stroke imaging before therapy directly on the C-arm system
without prior patient transfers to CT or MRI. This one-stop procedure improves
the time-to-therapy [4], but 3-D image acquisition is challenging due to the
prolonged acquisition time compared to helical CT. Rigid patient head motion
is more likely to occur, which leads to motion artifacts in the reconstructed
slice images. Thus, a robust patient motion compensation technique is highly
demanded.
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Rigid patient motion in CBCT can be compensated by adapting the projec-
tion matrices, which represent the acquisition trajectory. This compensated tra-
jectory is denoted as the motion free trajectory. Multiple methods for rigid mo-
tion estimation in transmission imaging have been proposed, which can be clus-
tered in three categories: (1) image-based autofocus [5, 6], (2) registration-based
[7] and (3) consistency-based [8, 9]. Within those categories, learning-based ap-
proaches have been presented that detect anatomical landmarks for registration
[10, 11] or assess the reconstruction quality to guide an image-based autofo-
cus [12]. The latter approach demonstrates promising initial results, capable of
competing with the state of the art, but the motion estimation is restricted to
in-plane motion [12].

As a counterpart, consistency-based methods are merely sensitive to in-plane
motion, as they evaluate their consistency by the comparison of epipolar lines.
For circular trajectories, epipolar lines are dominantly parallel to the acquisition
plane allowing precise detection of out-plane motion. This pose consistency
conditions a synergetic constraint for the deep autofocus approach presented in
Preubs et al. [12].

We propose an extension of this learning-based autofocus approach which
is constrained by the epipolar consistency conditions (ECC) derived from
Grangeat’s theorem [13].

2 DMotion estimation and compensation framework

2.1 Autofocus

Autofocus frameworks iteratively find a motion trajectory M by optimizing an
image-quality metric (IQM) evaluated on intermediate reconstructions which
are updated according to the current estimated motion trajectory. The motion
trajectory defines a transformation for each acquired projection i representing
the view-dependent patient orientation M; € SE(3). M is used, together with
the offline-calibrated trajectory 7T, for the backprojection operation in the Feld-
kamp-Davis-Kress (FDK) reconstruction algorithm [14]. If the image-quality
metric saturates, the method outputs a motion compensated reconstruction as
illustrated in Fig. 1.

We use a data driven IQM which is computed by a convolutional neural net-
work (CNN) trained to regress the reprojection error (RPE) from the observable
motion artifacts within a reconstructed slice image. To account for out-plane
motion, the autofocus framework is further constrained using the ECC based
on Grangeat’s theorem [13, 15]. Thus, in inference, we estimate the motion free
trajectory M by iteratively minimizing

M= argj\r/lnin CNN(FDK(M)) + A - ECC(M) (1)

with CNN(FDK(M)) denoting the network output (Sec. 2.2) for an intermediate
reconstruction and ECC(M) the consistency constraint (Sec.2.3), both for a
current motion estimate M. The regularization weight A is choosen such that
both metrics are within the same range.



