Abstract
A database has class imbalance when there are more cases of one class then the others. Classification algorithms are sensitive of this imbalance and tend to valorize the majority classes and ignore the minority classes, which is a problem when the minority classes are the classes of interest. In this paper we propose two extensions of the Ant-Miner algorithm to find better rules to the minority classes. These extensions modify, mainly, how rules are constructed and evaluated. The results show that the proposed algorithms found better rules to the minority classes, considering predictive accuracy and simplicity of the discovered rule list.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: Data Mining With an Ant Colony Optimization Algorithm. IEEE Transactions on Evolutionary Computation 6, 321–332 (2000)
Japkowicz, N.: Proceedings of the AAAI 2000 Workshop on Learning from Imbalanced Data Sets. AAAI Tech Report WS-00-05. AAAI (2000)
Chawla, N.V., Japkowicz, N., Kotcz, A.: Proceedings of the ICML 2003 Workshop on Learning from Imbalanced Data Sets (2003)
Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: Special Issue on Learning from Imbalanced Data Sets. ACM SIGKDD Explorations 6, 1–6 (2004)
Weiss, G.: Mining with Rarity: A Unifying Framework. ACM SIGKDD Explorations 6, 7–19 (2004)
Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data. ACM SIGKDD Explorations 6, 20–29 (2004)
Japkoawicz, N., Jo, T.: Class Imbalances versus Small Disjuncts. ACM SIGKDD Explorations 6, 40–49 (2004)
Liu, X.-Y., Wu, J., Zhou, Z.: Exploratory Under-Sampling for Class-Imbalance Learning. IEEE Transactions on Systems, Man and Cybernetics, Part B, 1–14 (2008)
Carvalho, D.R.: Árvore de Decisão/Algoritmo Genético para tratar o Problema de Pequenos Disjuntos em Classificação de Dados. Tese apresentada à COPPE/UFRJ (2005)
Dorigo, M., Colorni, A., Maniezzo, V.: The Ant System: Optimization by a colony of cooperating agentes. IEEE Transactions on Systems, Man and Cybernetics 26, 29–41 (1996)
Dorigo, M., Di Caro, G.: The Ant Colony Optimization meta-heuristic. In: New Ideas in Optimization, pp. 11–32 (1999)
Bo, L., Abbass, H.A., Mckay, B.: Density based Heuristic for Rule Discovery with Ant-Miner. In: The Sixth Australia-Japan Joint Workshop on Intelligent and Evolutionary System, pp. 180–184 (2002)
Bo, L., Abbass, H.A., Mckay, B.: Classification Rule Discovery with Ant Colony Optimization. In: Proc. IEEE/WIC International Conference on Intelligence Agent Technology, pp. 83–88 (2003)
Martens, D., Backer, M.D., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B.: Classification with ant colony optimization. IEEE Transactions on Evolutionary Computation 11, 651–665 (2007)
Otero, F.E.B., Freitas, A.A., Johnson, C.G.: cAnt-Miner: An Ant Colony Classification Algorithm to Cope with Continuous Attributes. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 48–59. Springer, Heidelberg (2008)
Meyer, F., Parpinelli, R.S.: Gui Ant-Miner: uma versão atualizada do minerador de dados baseado em colônias de formigas. In: I Congresso Sul Catarinense de Computação: UNESC - Criciúma (2005)
Salama, K.M., Abdelbar, A.M.: Extensions to the Ant-Miner Classification Rule Discovery Algorithm. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 167–178. Springer, Heidelberg (2010)
Machine Learning Group at University of Waikato, http://www.cs.waikato.ac.nz/~ml/weka
Machine Learning Repository from University California Irvine, http://archive.ics.uci.edu/ml/
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zangari, M., Romão, W., Constantino, A.A. (2012). Extensions of Ant-Miner Algorithm to Deal with Class Imbalance Problem. In: Yin, H., Costa, J.A.F., Barreto, G. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2012. IDEAL 2012. Lecture Notes in Computer Science, vol 7435. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32639-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-32639-4_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32638-7
Online ISBN: 978-3-642-32639-4
eBook Packages: Computer ScienceComputer Science (R0)