[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Extensions of Ant-Miner Algorithm to Deal with Class Imbalance Problem

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2012 (IDEAL 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7435))

  • 1644 Accesses

Abstract

A database has class imbalance when there are more cases of one class then the others. Classification algorithms are sensitive of this imbalance and tend to valorize the majority classes and ignore the minority classes, which is a problem when the minority classes are the classes of interest. In this paper we propose two extensions of the Ant-Miner algorithm to find better rules to the minority classes. These extensions modify, mainly, how rules are constructed and evaluated. The results show that the proposed algorithms found better rules to the minority classes, considering predictive accuracy and simplicity of the discovered rule list.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: Data Mining With an Ant Colony Optimization Algorithm. IEEE Transactions on Evolutionary Computation 6, 321–332 (2000)

    Article  Google Scholar 

  2. Japkowicz, N.: Proceedings of the AAAI 2000 Workshop on Learning from Imbalanced Data Sets. AAAI Tech Report WS-00-05. AAAI (2000)

    Google Scholar 

  3. Chawla, N.V., Japkowicz, N., Kotcz, A.: Proceedings of the ICML 2003 Workshop on Learning from Imbalanced Data Sets (2003)

    Google Scholar 

  4. Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: Special Issue on Learning from Imbalanced Data Sets. ACM SIGKDD Explorations 6, 1–6 (2004)

    Google Scholar 

  5. Weiss, G.: Mining with Rarity: A Unifying Framework. ACM SIGKDD Explorations 6, 7–19 (2004)

    Article  Google Scholar 

  6. Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data. ACM SIGKDD Explorations 6, 20–29 (2004)

    Article  Google Scholar 

  7. Japkoawicz, N., Jo, T.: Class Imbalances versus Small Disjuncts. ACM SIGKDD Explorations 6, 40–49 (2004)

    Article  Google Scholar 

  8. Liu, X.-Y., Wu, J., Zhou, Z.: Exploratory Under-Sampling for Class-Imbalance Learning. IEEE Transactions on Systems, Man and Cybernetics, Part B, 1–14 (2008)

    Google Scholar 

  9. Carvalho, D.R.: Árvore de Decisão/Algoritmo Genético para tratar o Problema de Pequenos Disjuntos em Classificação de Dados. Tese apresentada à COPPE/UFRJ (2005)

    Google Scholar 

  10. Dorigo, M., Colorni, A., Maniezzo, V.: The Ant System: Optimization by a colony of cooperating agentes. IEEE Transactions on Systems, Man and Cybernetics 26, 29–41 (1996)

    Article  Google Scholar 

  11. Dorigo, M., Di Caro, G.: The Ant Colony Optimization meta-heuristic. In: New Ideas in Optimization, pp. 11–32 (1999)

    Google Scholar 

  12. Bo, L., Abbass, H.A., Mckay, B.: Density based Heuristic for Rule Discovery with Ant-Miner. In: The Sixth Australia-Japan Joint Workshop on Intelligent and Evolutionary System, pp. 180–184 (2002)

    Google Scholar 

  13. Bo, L., Abbass, H.A., Mckay, B.: Classification Rule Discovery with Ant Colony Optimization. In: Proc. IEEE/WIC International Conference on Intelligence Agent Technology, pp. 83–88 (2003)

    Google Scholar 

  14. Martens, D., Backer, M.D., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B.: Classification with ant colony optimization. IEEE Transactions on Evolutionary Computation 11, 651–665 (2007)

    Article  Google Scholar 

  15. Otero, F.E.B., Freitas, A.A., Johnson, C.G.: cAnt-Miner: An Ant Colony Classification Algorithm to Cope with Continuous Attributes. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 48–59. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Meyer, F., Parpinelli, R.S.: Gui Ant-Miner: uma versão atualizada do minerador de dados baseado em colônias de formigas. In: I Congresso Sul Catarinense de Computação: UNESC - Criciúma (2005)

    Google Scholar 

  17. Salama, K.M., Abdelbar, A.M.: Extensions to the Ant-Miner Classification Rule Discovery Algorithm. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 167–178. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Machine Learning Group at University of Waikato, http://www.cs.waikato.ac.nz/~ml/weka

  19. Machine Learning Repository from University California Irvine, http://archive.ics.uci.edu/ml/

  20. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zangari, M., Romão, W., Constantino, A.A. (2012). Extensions of Ant-Miner Algorithm to Deal with Class Imbalance Problem. In: Yin, H., Costa, J.A.F., Barreto, G. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2012. IDEAL 2012. Lecture Notes in Computer Science, vol 7435. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32639-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32639-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32638-7

  • Online ISBN: 978-3-642-32639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics