Abstract
Ant-Miner is an ant-based algorithm for the discovery of classification rules. This paper proposes four extensions to Ant-Miner: 1) we allow the use of a logical negation operator in the antecedents of constructed rules; 2) we use stubborn ants, an ACO-variation in which an ant is allowed to take into consideration its own personal past history; 3) we use multiple types of pheromone, one for each permitted rule class, i.e. an ant would first select the rule class and then deposit the corresponding type of pheromone; 4) we allow each ant to have its own value of the α and β parameters, which in a sense means that each ant has its own individual personality. Empirical results show improvements in the algorithm’s performance in terms of the simplicity of the generated rule set, the number of trials, and the predictive accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdelbar, A.M.: Stubborn ants. In: Proceedings IEEE Swarm Intelligence Symposium, pp. 1–5 (2008)
Chan, A., Freitas, A.: A new classification-rule pruning procedure for an ant colony algorithm. In: Talbi, E.-G., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds.) EA 2005. LNCS, vol. 3871, pp. 25–36. Springer, Heidelberg (2006)
Dorigo, M., Colorni, A., Maniezzo, V.: The Ant System: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B 26, 29–41 (1996)
Jaiwei, H., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2006)
Liu, B., Abbass, H.A., McKay, B.: Density-based heuristic for rule discovery with ant-miner. In: Proc. 6th Australasia-Japan Joint Workshop on Intell. Evol. Syst., pp. 180–184 (2002)
Liu, B., Abbass, H.A., McKay, B.: Classification rule discovery with ant colony optimization. In: Proc. IEEE/WIC Int. Conf. Intell. Agent Technol., pp. 83–88 (2003)
Martens, D., Backer, M.D., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B.: Classification with ant colony optimization. IEEE Transactions on Evolutionary Computation 11, 651–665 (2007)
Otero, F., Freitas, A., Johnson, C.G.: cAnt-Miner: An ant colony classification algorithm to cope with continuous attributes. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 48–59. Springer, Heidelberg (2008)
Parpinelli, R.S., Lopes, H.S., Freitas, A.: Data mining with an ant colony optimization algorithm. IEEE Transactions on Evolutionary Computation 6, 321–332 (2002)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)
Smaldon, J., Freitas, A.: A new version of the Ant-Miner algorithm discovering unordered rule sets. In: Proceedings Genetic and Evolutionary Computation Conference (GECCO), pp. 43–50 (2006)
UCI Repository of Machine Learning Databases, http://www.ics.uci.edu/~mlearn/MLRepository.html (Retrieved July 2009)
Wang, Z., Feng, B.: Classification Rule Mining with an Improved Ant Colony Algorithm. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 357–367. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Salama, K.M., Abdelbar, A.M. (2010). Extensions to the Ant-Miner Classification Rule Discovery Algorithm. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2010. Lecture Notes in Computer Science, vol 6234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15461-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-15461-4_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15460-7
Online ISBN: 978-3-642-15461-4
eBook Packages: Computer ScienceComputer Science (R0)