[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Kernel Lower Bounds Using Co-nondeterminism: Finding Induced Hereditary Subgraphs

  • Conference paper
Algorithm Theory – SWAT 2012 (SWAT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7357))

Included in the following conference series:

Abstract

This work further explores the applications of co-nondeterminism for showing kernelization lower bounds. The only known example excludes polynomial kernelizations for the Ramsey problem of finding an independent set or a clique of at least k vertices in a given graph (Kratsch 2012, SODA). We study the more general problem of finding induced subgraphs on k vertices fulfilling some hereditary property Π, called Π-Induced Subgraph. The problem is NP-hard for all non-trivial choices of Π by a classic result of Lewis and Yannakakis (JCSS 1980). The parameterized complexity of this problem was classified by Khot and Raman (TCS 2002) depending on the choice of Π. The interesting cases for kernelization are for Π containing all independent sets and all cliques, since the problem is trivial or W[1]-hard otherwise.

Our results are twofold. Regarding Π-Induced Subgraph, we show that for a large choice of natural graph properties Π, including chordal, perfect, cluster, and cograph, there is no polynomial kernel with respect to k. This is established by two theorems: one using a co-nondeterministic variant of cross-composition and one by a polynomial parameter transformation from Ramsey.

Additionally, we show how to use improvement versions of NP-hard problems as source problems for lower bounds, without requiring their NP-hardness. E.g., for Π-Induced Subgraph our compositions may assume existing solutions of size k − 1. We believe this to be useful for further lower bound proofs, since improvement versions simplify the construction of a disjunction (OR) of instances required in compositions. This adds a second way of using co-nondeterminism for lower bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. Journal of Computer and System Sciences 75(8), 423–434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique for kernelization lower bounds. In: STACS, pp. 165–176 (2011)

    Google Scholar 

  3. Dell, H., Marx, D.: Kernelization of packing problems. In: SODA, pp. 68–81 (2012)

    Google Scholar 

  4. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. In: STOC, pp. 251–260 (2010)

    Google Scholar 

  5. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through Colors and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. Journal of Computer and System Sciences 77, 91–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hermelin, D., Wu, X.: Weak compositions and their applications to polynomial lower bounds for kernelization. In: SODA, pp. 104–113 (2012)

    Google Scholar 

  8. Kratsch, S.: Co-nondeterminism in compositions: a kernelization lower bound for a ramsey-type problem. In: SODA, pp. 114–122 (2012)

    Google Scholar 

  9. Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic applications. SIAM Journal on Computing 39(5), 1667–1713 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with hereditary properties. Theoretical Computer Science 289, 997–1008 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. Journal of Computer and System Sciences 20(2), 219–230 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Mathematica 2, 463–470 (1935)

    MathSciNet  Google Scholar 

  13. Erdős, P.: Some remarks on the theory of graphs. Bulletin of the American Mathematical Society 53, 292–294 (1947)

    Article  MathSciNet  Google Scholar 

  14. Erdős, P., Hajnal, A.: Ramsey-type theorems. Discrete Applied Mathematics 25(1-2), 37–52 (1989)

    Article  MathSciNet  Google Scholar 

  15. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58, 171–176 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marx, D., Schlotter, I.: Obtaining a planar graph by vertex deletion. Algorithmica 62(3-4), 807–822 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. van Bevern, R., Komusiewicz, C., Moser, H., Niedermeier, R.: Measuring Indifference: Unit Interval Vertex Deletion. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 232–243. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Villanger, Y.: Proper Interval Vertex Deletion. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 228–238. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Diestel, R.: Graph Theory. Springer (2005)

    Google Scholar 

  21. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Elsevier Science (2004)

    Google Scholar 

  22. Alon, N., Pach, J., Solymosi, J.: Ramsey-type theorems with forbidden subgraphs. Combinatorica 21(2), 155–170 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lovasz, L.: Perfect graphs. In: Beineke, L.W., Wilson, R.J. (eds.) Selected Topics in Graph Theory, vol. 2, pp. 55–67. Academic Press, London (1983)

    Google Scholar 

  24. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theoretical Computer Science 412(35), 4570–4578 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kratsch, S., Pilipczuk, M., Rai, A., Raman, V. (2012). Kernel Lower Bounds Using Co-nondeterminism: Finding Induced Hereditary Subgraphs. In: Fomin, F.V., Kaski, P. (eds) Algorithm Theory – SWAT 2012. SWAT 2012. Lecture Notes in Computer Science, vol 7357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31155-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31155-0_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31154-3

  • Online ISBN: 978-3-642-31155-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics