[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Statistical Approach to Star Rating Classification of Sentiment

  • Conference paper
Management Intelligent Systems

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 171))

Abstract

Automated analysis of the ever-increasing amount of reviews available through the Web can enable businesses to identify why people like or dislike (aspects of) products or brands, yet to this end, a reliable indication of the intended sentiment of reviews is of crucial importance. This sentiment is typically quantified in universal star ratings, which are not always available. We propose and compare the performance of several statistical methods of automatically classifying star ratings of reviews represented by means of a binary vector representation, with features signaling the presence of sentiment-carrying words. A nearest neighbor classifier maximizes recall, whereas a naïve Bayes classifier excels in terms of precision, accuracy, and the root mean squared error of the assigned number of stars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. In: 7th Conference on International Language Resources and Evaluation (LREC 2010), pp. 2200–2204. European Language Resources Association (2010)

    Google Scholar 

  2. Heerschop, B., Goossen, F., Hogenboom, A., Frasincar, F., Kaymak, U., de Jong, F.: Polarity Analysis of Texts using Discourse Structure. In: 20th ACM Conference on Information and Knowledge Management (CIKM 2011), pp. 1061–1070. Association for Computing Machinery (2011)

    Google Scholar 

  3. Heerschop, B., van Iterson, P., Hogenboom, A., Frasincar, F., Kaymak, U.: Analyzing Sentiment in a Large Set of Web Data while Accounting for Negation. In: 7th Atlantic Web Intelligence Conference (AWIC 2011), pp. 195–205. Springer (2011)

    Google Scholar 

  4. Hogenboom, A., Hogenboom, F., Kaymak, U., Wouters, P., de Jong, F.: Mining Economic Sentiment using Argumentation Structures. In: Trujillo, J., Dobbie, G., Kangassalo, H., Hartmann, S., Kirchberg, M., Rossi, M., Reinhartz-Berger, I., Zimányi, E., Frasincar, F. (eds.) ER 2010. LNCS, vol. 6413, pp. 200–209. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Hogenboom, A., van Iterson, P., Heerschop, B., Frasincar, F., Kaymak, U.: Determining Negation Scope and Strength in Sentiment Analysis. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2011), pp. 2589–2594. IEEE (2011)

    Google Scholar 

  6. Jansen, B., Zhang, M., Sobel, K., Chowdury, A.: Twitter Power: Tweets as Electronic Word of Mouth. Journal of the American Society for Information Science and Technology 60(11), 2169–2188 (2009)

    Article  Google Scholar 

  7. Jindal, N., Liu, B.: Opinion Spam and Analysis. In: 1st ACM International Conference on Web Search and Data Mining (WSDM 2008), pp. 219–230. Association for Computing Machinery (2008)

    Google Scholar 

  8. Melville, P., Sindhwani, V., Lawrence, R.: Social Media Analytics: Channeling the Power of the Blogosphere for Marketing Insight. In: 1st Workshop on Information in Networks, WIN 2009 (2009)

    Google Scholar 

  9. Paltoglou, G., Thelwall, M.: A study of Information Retrieval weighting schemes for sentiment analysis. In: 48th Annual Meeting of the Association for Computational Linguistics (ACL 2010), pp. 1386–1395. Association for Computational Linguistics (2010)

    Google Scholar 

  10. Pang, B., Lee, L.: A Sentimental Education: Sentiment Analysis using Subjectivity Summarization based on Minimum Cuts. In: 42nd Annual Meeting of the Association for Computational Linguistics (ACL 2004), pp. 271–280. Association for Computational Linguistics (2004)

    Google Scholar 

  11. Pang, B., Lee, L.: Opinion Mining and Sentiment Analysis. Foundations and Trends in Information Retrieval 2(1), 1–135 (2008)

    Article  Google Scholar 

  12. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment Classification using Machine Learning Techniques. In: Empirical Methods in Natural Language Processing (EMNLP 2002), pp. 79–86. Association for Computational Linguistics (2002)

    Google Scholar 

  13. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-Based Methods for Sentiment Analysis. Computational Linguistics 37(2), 267–307 (2011)

    Article  Google Scholar 

  14. Taboada, M., Voll, K., Brooke, J.: Extracting Sentiment as a Function of Discourse Structure and Topicality. Tech. Rep. 20. Simon Fraser University (2008), http://www.cs.sfu.ca/research/publications/techreports/#2008

  15. van der Meer, J., Boon, F., Hogenboom, F., Frasincar, F., Kaymak, U.: A Framework for Automatic Annotation of Web Pages Using the Google Rich Snippets Vocabulary. In: Twenty-Sixth Symposium On Applied Computing (SAC 2011), Web Technologies Track, pp. 765–772. Association for Computing Machinery (2012)

    Google Scholar 

  16. Whitelaw, C., Garg, N., Argamon, S.: Using Appraisal Groups for Sentiment Analysis. In: 14th ACM International Conference on Information and Knowledge Management (CIKM 2005), pp. 625–631. Association for Computing Machinery (2005)

    Google Scholar 

  17. Wiebe, J., Wilson, T., Bruce, R., Bell, M., Martin, M.: Learning Subjective Language. Computational Linguistics 30(3), 277–308 (2004)

    Article  Google Scholar 

  18. Wiebe, J., Wilson, T., Cardie, C.: Annotating Expressions of Opinions and Emotions in Language. Language Resources and Evaluation 39(2), 165–210 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Hogenboom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hogenboom, A., Boon, F., Frasincar, F. (2012). A Statistical Approach to Star Rating Classification of Sentiment. In: Casillas, J., Martínez-López, F., Corchado Rodríguez, J. (eds) Management Intelligent Systems. Advances in Intelligent Systems and Computing, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30864-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30864-2_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30863-5

  • Online ISBN: 978-3-642-30864-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics