[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mining Economic Sentiment Using Argumentation Structures

  • Conference paper
Advances in Conceptual Modeling – Applications and Challenges (ER 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6413))

Included in the following conference series:

Abstract

The recent turmoil in the financial markets has demonstrated the growing need for automated information monitoring tools that can help to identify the issues and patterns that matter and that can track and predict emerging events in business and economic processes. One of the techniques that can address this need is sentiment mining. Existing approaches enable the analysis of a large number of text documents, mainly based on their statistical properties and possibly combined with numeric data. Most approaches are limited to simple word counts and largely ignore semantic and structural aspects of content. Yet, argumentation plays an important role in expressing and promoting an opinion. Therefore, we propose a framework that allows the incorporation of information on argumentation structure in the models for economic sentiment discovery in text.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adams, F.G., Green, E.W.: Explaining and Predicting Aggregate Consumer Attitudes. International Economic Review 6, 275–293 (1965)

    Article  Google Scholar 

  2. Arnold, I.J.M., Vrugt, E.B.: Fundamental Uncertainty and Stock Market Volatility. Applied Financial Economics 18, 1425–1440 (2008)

    Article  Google Scholar 

  3. Bovi, M.: Economic versus Psychological Forecasting. Evidence from Consumer Confidence Surveys. Journal of Economic Psychology 30, 563–574 (2009)

    Article  Google Scholar 

  4. Buckingham Shum, S.J., Uren, V., Li, G., Domingue, J., Motta, E.: Visualizing Argumentation: Software Tools for Collaborative and Educational Sense-Making. In: Visualizing Internetworked Argumentation, pp. 185–204. Springer, Heidelberg (2002)

    Google Scholar 

  5. Cosgel, M.M.: Rhetoric in the Economy: Consumption and Audience. Journal of Socio-Economics 21, 363–377 (1992)

    Article  Google Scholar 

  6. Cunningham, H.: GATE, a General Architecture for Text Engineering. Computers and the Humanities 36, 223–254 (2002)

    Article  Google Scholar 

  7. Daelemans, W., van den Bosch, A.: Memory-Based Language Processing. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  8. Devitt, A., Ahmad, K.: Sentiment Analysis in Financial News: A Cohesion-Based Approach. In: 45th Annual Meeting of the Association for Computational Linguistics (ACL 2007), pp. 984–991 (2007)

    Google Scholar 

  9. Farrell, J.: Talk is Cheap. The American Economic Review 85, 186–190 (1995)

    Google Scholar 

  10. Feldman, R., Sanger, J.: The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  11. Freitag, D.: Machine Learning for Information Extraction in Informal Domains. Machine Learning 39, 169–202 (2000)

    Article  MATH  Google Scholar 

  12. Hartelius, J.E., Browning, L.D.: The Application of Rhetorical Theory in Managerial Research: A Literature Review. Management Communication Quarterly 22, 13–39 (2008)

    Article  Google Scholar 

  13. Herrera, J., Penas, A., Verdejo, F.: Techniques for Recognizing Textual Entailment and Semantic Equivalence. In: Marín, R., Onaindía, E., Bugarín, A., Santos, J. (eds.) CAEPIA 2005. LNCS (LNAI), vol. 4177, pp. 419–428. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Holton, C.: Identifying Disgruntled Employee Systems Fraud Risk Through Text Mining: A Simple Solution for a Multi-Billion Dollar Problem. Decision Support Systems 46, 853–858 (2009)

    Article  Google Scholar 

  15. Howrey, E.P.: The Predictive Power of the Index of Consumer Sentiment. Brookings Papers on Economic Activity 32, 176–216 (2001)

    Google Scholar 

  16. Hu, M., Sun, A., Lim, E.P.: Comments-Oriented Blog Summarization by Sentence Extraction. In: 16th ACM SIGIR Conference on Information and Knowledge Management (CIKM 2007), pp. 901–904 (2007)

    Google Scholar 

  17. Katona, G.: Psychological Economics. Elsevier, Amsterdam (1975)

    Google Scholar 

  18. Ludvigson, S.C.: Consumer Confidence and Consumer Spending. The Journal of Economic Perspectives 18, 29–50 (2004)

    Article  Google Scholar 

  19. Mao, Y., Lebanon, G.: Sequential Models for Sentiment Prediction. In: ICML Workshop on Learning in Structured Output Spaces (2006)

    Google Scholar 

  20. Marcu, D.: The Rhetorical Parsing of Unrestricted Texts: A Surface-Based Approach. Computational Linguistics 26, 395–448 (2000)

    Article  Google Scholar 

  21. McCloskey, D., Klamer, A.: One Quarter of GDP is Persuasion. American Economic Review 85, 191–195 (1995)

    Google Scholar 

  22. Mochales Palau, R., Moens, M.F.: Argumentation Mining: The Detection, Classification and Structure of Arguments in Text. In: 12th International Conference on Artificial Intelligence and Law (ICAIL 2009), pp. 98–107 (2009)

    Google Scholar 

  23. van Oest, R., Franses, P.H.: Measuring Changes in Consumer Confidence. Journal of Economic Psychology 29, 255–275 (2008)

    Article  Google Scholar 

  24. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs Up? Sentiment Classification using Machine Learning-Techniques. In: Conference on Empirical Methods in Natural Language Processing (EMNLP 2002), pp. 79–86 (2002)

    Google Scholar 

  25. Shanahan, J.G., Qu, Y., Wiebe, J.M.: Computing Attitude and Affect in Text: Theory and Applications. Springer, Heidelberg (2006)

    Book  Google Scholar 

  26. Shiller, R.J.: Conversation, Information, and Herd Behaviour. American Economic Review 85, 181–185 (1995)

    Google Scholar 

  27. Taboada, M., Mann, W.C.: Rhetorical Structure Theory: Looking Back and Moving Ahead. Discourse Studies 8, 423–459 (2006)

    Article  Google Scholar 

  28. Teufel, S.: Argumentative Zoning: Information Extraction from Scientific Text. Ph.D. thesis, University of Edinburgh (1999)

    Google Scholar 

  29. Turmo, J., Ageno, A., Catala, N.: Adaptive Information Extraction. ACM Computing Surveys 38(2) (2006)

    Google Scholar 

  30. Tversky, A., Kahneman, D.: Judgment under Uncertainty: Heuristics and Biases. Science 185, 1124–1131 (1974)

    Article  Google Scholar 

  31. Vargas-Vera, M., Moreale, E.: Automated Extraction of Knowledge from Student Essays. International Journal of Knowledge and Learning 1, 318–331 (2005)

    Article  Google Scholar 

  32. Vuchelen, J.: Consumer Sentiment and Macroeconomic Forecasts. Journal of Economic Psychology 25, 493–506 (2004)

    Article  Google Scholar 

  33. Webber, B., Stone, M., Joshi, A., Knott, A.: Anaphora and Discourse Structure. Computational Linguistics 29, 545–587 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hogenboom, A., Hogenboom, F., Kaymak, U., Wouters, P., de Jong, F. (2010). Mining Economic Sentiment Using Argumentation Structures. In: Trujillo, J., et al. Advances in Conceptual Modeling – Applications and Challenges. ER 2010. Lecture Notes in Computer Science, vol 6413. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16385-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16385-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16384-5

  • Online ISBN: 978-3-642-16385-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics