[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7924))

Abstract

Given a network N(V,A,c) and a feasible flow x 0, an inverse maximum flow problem is to modify the capacity vector as little as possible to make x 0 form a maximum flow of the network. The modification can be measured by different norms. In this paper, we consider the inverse maximum flow problems under the combining norms, i.e., the modification cost is fixed in a given interval, and is depended on the modification out of the given interval. For both sum-type and bottleneck-type cases, we present their respective combinatorial algorithms that all run in strongly polynomial times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows: Theory, Algorithms and Applications. Prentice-Hall, New York (1993)

    MATH  Google Scholar 

  2. Burton, D., Toint, P.: On an instance of the inverse shortest paths problem. Mathematical Programming 53, 45–61 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. He, Y., Zhang, B., Yao, E.: Wighted inverse minimum spanning tree problems under Hamming distance. Journal of Combinatorial Optimization 9, 91–100 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Heuberger, C.: Inverse Optimization: A survey on problems, methods, and results. Journal of Combinatorial Optimization 8, 329–361 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu, L., He, Y.: Inverse minimum spanning tree problem and reverse shortest-path problem with discrete values. Progress in Natural Science 16, 649–655 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, L., Yao, E.: A weighted inverse minimum cut problem under the bottleneck type Hamming distance. Asia-Pacific Journal of Operational Research 24, 725–736 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, L., Zhang, J.: Inverse maximum flow problems under the weighted Hamming distance. Journal of Combinatorial Optimization 12, 395–408 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Schrijver, A.: Combinatorial Optimization, Polyhedra and Efficiency. Springer, Berlin (2003)

    MATH  Google Scholar 

  9. Yang, C., Zhang, J., Ma, Z.: Inverse maximum flow and minimum cut problems. Optimization 40, 147–170 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, J., Xu, S., Ma, Z.: An algorithm for inverse minimum spanning tree problem. Optimization Methods and Software 8, 69–84 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, B., Zhang, J., Qi, L.: The shortest path improvement problems under Hamming distance. Journal of Combinatorial Optimization 12, 351–361 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, L. (2013). Inverse Maximum Flow Problems under the Combining Norms. In: Fellows, M., Tan, X., Zhu, B. (eds) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science, vol 7924. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38756-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38756-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38755-5

  • Online ISBN: 978-3-642-38756-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics