[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Inverse Maximum Flow Problem Under the Combination of the Weighted l\(_2\) Norm and the Weighted Hamming Distance

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

The idea of the inverse optimization problem is to adjust the values of the parameters so that the observed feasible solutions are indeed optimal. The modification cost is measured by different norms, such as \(l_1, l_2, l_\infty \) norms and the Hamming distance, and the goal is to adjust the parameters as little as possible. In this paper, we consider the inverse maximum flow problem under the combination of the weighted \(l_2\) norm and the weighted Hamming distance, i.e., the modification cost is fixed in a given interval and depends on the modification out of the given interval. We present a combinatorial algorithm which can be finished in O(nm) to solve it due to the minimum cut of the residual network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnant, T.L., Orlin, J.B.: Network Flows: Theory. Algorithms and Applications. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  2. Yang, C., Zhang, J.Z., Ma, Z.F.: Inverse maximum flow and minimum cut problems. Optimization 40, 147–170 (1997)

    Article  MathSciNet  Google Scholar 

  3. Liu, L.C., Zhang, J.Z.: Inverse maximum flow problems under the weighted Hamming distance. J. Comb. Optim. 12, 395–408 (2006)

    Article  MathSciNet  Google Scholar 

  4. Deaconu, A.: The inverse maximum flow problem with lower and upper bounds for the flow. Yugosl. J. Oper. Res. 18, 13–22 (2008)

    Article  MathSciNet  Google Scholar 

  5. Deaconu, A.: The inverse maximum flow problem considering \(l_\infty \) norm. RAIRO Oper. Res. 42, 401–414 (2008)

    Article  MathSciNet  Google Scholar 

  6. Deaconu, A., Ciurea, E.: The inverse maximum flow problem under \(L_k\) norms. Carpathian J. Math. 28, 59–66 (2012)

    Article  MathSciNet  Google Scholar 

  7. Ciurea, E., Deaconu, A.: Inverse minimum flow problem. J. Appl. Math. Comput. 23, 193–203 (2007)

    Article  MathSciNet  Google Scholar 

  8. Güler, C., Hamacher, H.W.: Capacity inverse minimum cost flow problem. J. Comb. Optim. 19, 43–59 (2010)

    Article  MathSciNet  Google Scholar 

  9. Tayyebi, J., Aman, M.: Note on “Inverse minimum cost flow problems under the weighted Hamming distance”. Eur. J. Oper. Res. 234, 916–920 (2014)

    Article  MathSciNet  Google Scholar 

  10. Alizadeh, B., Burkard, R.E., Pferschy, U.: Inverse 1-center location problems with edge length augmentation on trees. Computing 86, 331–343 (2009)

    Article  MathSciNet  Google Scholar 

  11. Guan, X.C., Zhang, B.W.: Inverse 1-median problem on trees under weighted Hamming distance. J. Glob. Optim. 54, 75–82 (2012)

    Article  MathSciNet  Google Scholar 

  12. Nguyen, K.T., Sepasian, A.R.: The inverse 1-center problem on trees with variable edge lengths under Chebyshev norm and Hamming distance. J. Comb. Optim. 32, 872–884 (2016)

    Article  MathSciNet  Google Scholar 

  13. Nguyen, K.T., Vui, P.T.: The inverse \(p\)-maxian problem on trees with variable edge lengths. Taiwan. J. Math. 20, 1437–1449 (2016)

    Article  MathSciNet  Google Scholar 

  14. He, Y., Zhang, B.W., Yao, E.Y.: Weighted inverse minimum spanning tree problems under Hamming distance. J. Comb. Optim. 9, 91–100 (2005)

    Article  MathSciNet  Google Scholar 

  15. Liu, L.C., Wang, Q.: Constrained inverse min-max spanning tree problems under the weighted Hamming distance. J. Glob. Optim. 43, 83–95 (2009)

    Article  MathSciNet  Google Scholar 

  16. Liu, L.C., Yao, E.Y.: Inverse min-max spanning tree problem under the weighted sum-type Hamming distance. Theor. Comput. Sci. 396, 28–34 (2008)

    Article  MathSciNet  Google Scholar 

  17. Zhang, B.W., Zhang, J.Z., He, Y.: Constrained inverse minimum spanning tree problems under the bottleneck-type Hamming distance. J. Glob. Optim. 34, 467–474 (2006)

    Article  MathSciNet  Google Scholar 

  18. Liu, L.C., Yao, E.Y.: A weighted inverse minimum cut problem under the bottleneck type Hamming distance. Asia Pac. J. Oper. Res. 24, 725–736 (2007)

    Article  MathSciNet  Google Scholar 

  19. Zhang, J.Z., Cai, M.C.: Inverse problem of minimum cuts. Math. Methods Oper. Res. 47, 51–58 (1998)

    Article  MathSciNet  Google Scholar 

  20. Heuberger, C.: Inverse Optimization: a survey on problems, methods, and results. J. Comb. Optim. 8, 329–361 (2004)

    Article  MathSciNet  Google Scholar 

  21. Orlin, J.B.: Max flows in \(O(nm)\) time, or better. In: Proceeding of annual ACM symposium on theory of computing, pp. 765–774 (2013)

Download references

Acknowledgements

The authors wish to thank the anonymous referees whose valuable comments allowed us to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Cheng Liu.

Additional information

This research is supported by the Fundamental Research Funds for the Central Universities (No. 20720190068) and the China Scholarship Council (No. 201706315073).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, LC., Gao, H. & Li, C. Inverse Maximum Flow Problem Under the Combination of the Weighted l\(_2\) Norm and the Weighted Hamming Distance. J. Oper. Res. Soc. China 9, 465–474 (2021). https://doi.org/10.1007/s40305-019-00273-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-019-00273-w

Keywords

Mathematics Subject Classification

Navigation