Abstract
We study the decidability status of the model checking problem for Metric Temporal Logic over models with one counter variable whose value can increase and decrease. This includes 1-counter machines with zero tests, 1-dimensional vector addition systems with states, and weighted automata with weights in the integers. We show that model checking of non-deterministic models is undecidable, even if we restrict the intervals used in the logic to be of the form ( − ∞ ,0] and [0, ∞ ). On the positive side, we show that model checking of deterministic models is decidable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)
Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Pushdown Automata: Application to Model-Checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)
Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. Inf. Comput. 208(2), 97–116 (2010)
Bouyer, P., Larsen, K.G., Markey, N.: Model checking one-clock priced timed automata. Logical Methods in Computer Science 4(2) (2008)
Demri, S., Lazić, R., Sangnier, A.: Model Checking Freeze LTL over One-Counter Automata. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 490–504. Springer, Heidelberg (2008)
Demri, S., Sangnier, A.: When Model-Checking Freeze LTL over Counter Machines Becomes Decidable. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 176–190. Springer, Heidelberg (2010)
Esparza, J.: Decidability and Complexity of Petri Net Problems - An Introduction. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428. Springer, Heidelberg (1998)
Göller, S., Haase, C., Ouaknine, J., Worrell, J.: Model Checking Succinct and Parametric One-Counter Automata. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 575–586. Springer, Heidelberg (2010)
Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), 255–299 (1990)
Laroussinie, F., Markey, N., Schnoebelen, P.: On Model Checking Durational Kripke Structures. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 264–279. Springer, Heidelberg (2002)
Meinecke, I., Quaas, K.: Parameterized model checking of weighted networks, submitted to: TCS special issue WATA (2012)
Ouaknine, J., Worrell, J.B.: On Metric Temporal Logic and Faulty Turing Machines. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 217–230. Springer, Heidelberg (2006)
Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal logic over finite words. Logical Methods in Computer Science 3(1) (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Quaas, K. (2013). Model Checking Metric Temporal Logic over Automata with One Counter. In: Dediu, AH., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2013. Lecture Notes in Computer Science, vol 7810. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37064-9_41
Download citation
DOI: https://doi.org/10.1007/978-3-642-37064-9_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37063-2
Online ISBN: 978-3-642-37064-9
eBook Packages: Computer ScienceComputer Science (R0)