[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Model Checking Metric Temporal Logic over Automata with One Counter

  • Conference paper
Language and Automata Theory and Applications (LATA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7810))

Abstract

We study the decidability status of the model checking problem for Metric Temporal Logic over models with one counter variable whose value can increase and decrease. This includes 1-counter machines with zero tests, 1-dimensional vector addition systems with states, and weighted automata with weights in the integers. We show that model checking of non-deterministic models is undecidable, even if we restrict the intervals used in the logic to be of the form ( − ∞ ,0] and [0, ∞ ). On the positive side, we show that model checking of deterministic models is decidable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Pushdown Automata: Application to Model-Checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  4. Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. Inf. Comput. 208(2), 97–116 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouyer, P., Larsen, K.G., Markey, N.: Model checking one-clock priced timed automata. Logical Methods in Computer Science 4(2) (2008)

    Google Scholar 

  6. Demri, S., Lazić, R., Sangnier, A.: Model Checking Freeze LTL over One-Counter Automata. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 490–504. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Demri, S., Sangnier, A.: When Model-Checking Freeze LTL over Counter Machines Becomes Decidable. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 176–190. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Esparza, J.: Decidability and Complexity of Petri Net Problems - An Introduction. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  9. Göller, S., Haase, C., Ouaknine, J., Worrell, J.: Model Checking Succinct and Parametric One-Counter Automata. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 575–586. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), 255–299 (1990)

    Article  Google Scholar 

  11. Laroussinie, F., Markey, N., Schnoebelen, P.: On Model Checking Durational Kripke Structures. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 264–279. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Meinecke, I., Quaas, K.: Parameterized model checking of weighted networks, submitted to: TCS special issue WATA (2012)

    Google Scholar 

  13. Ouaknine, J., Worrell, J.B.: On Metric Temporal Logic and Faulty Turing Machines. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 217–230. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal logic over finite words. Logical Methods in Computer Science 3(1) (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Quaas, K. (2013). Model Checking Metric Temporal Logic over Automata with One Counter. In: Dediu, AH., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2013. Lecture Notes in Computer Science, vol 7810. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37064-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37064-9_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37063-2

  • Online ISBN: 978-3-642-37064-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics