[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Model Checking Succinct and Parametric One-Counter Automata

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6199))

Included in the following conference series:

Abstract

We investigate the decidability and complexity of various model checking problems over one-counter automata. More specifically, we consider succinct one-counter automata, in which additive updates are encoded in binary, as well as parametric one-counter automata, in which additive updates may be given as unspecified parameters. We fully determine the complexity of model checking these automata against CTL, LTL, and modal μ-calculus specifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnold, A., Niwiński, D.: Rudiments of μ-calculus. Studies in Logic and the Foundations of Mathematics, vol. 146. North-Holland, Amsterdam (2001)

    Book  Google Scholar 

  2. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs with lists are counter automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 517–531. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 577–588. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Bozga, M., Iosif, R.: On decidability within the arithmetic of addition and divisibility. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 425–439. Springer, Heidelberg (2005)

    Google Scholar 

  5. Cai, J.-Y., Furst, M.: PSPACE survives constant-width bottlenecks. International Journal of Foundations of Computer Science 2(1), 67–76 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chitic, C., Rosu, D.: On validation of xml streams using finite state machines. In: Proc. of WebDB, pp. 85–90. ACM, New York (2004)

    Chapter  Google Scholar 

  7. Chiu, A., Davida, G., Litow, B.: Division in logspace-uniform \(\rm NC\sp 1\). Theoretical Informatics and Applications. Informatique Théorique et Applications 35(3), 259–275 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger arithmetic. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  9. Demri, S., Gascon, R.: The effects of bounding syntactic resources on Presburger LTL. Journal of Logic and Computation 19(6), 1541–1575 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Göller, S., Haase, C., Ouaknine, J., Worrel, J.: Model checking succinct and parametric one-counter automata. Technical report, University of Bremen (2010), http://www.informatik.uni-bremen.de/tdki/research/papers/succ.pdf

  11. Göller, S., Lohrey, M.: Branchning-time model checking of one-counter processes. Technical report, arXiv.org (2009), http://arxiv.org/abs/0909.1102

  12. Göller, S., Lohrey, M.: Branchning-time model checking of one-counter processes. In: Proc. of STACS, IFIB Schloss Dagstuhl (2010)

    Google Scholar 

  13. Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in parametric one-counter automata (2010) (submitted), http://www.comlab.ox.ac.uk/files/2833/iandc.pdf

  14. Hertrampf, U., Lautemann, C., Schwentick, T., Vollmer, H., Wagner, K.W.: On the power of polynomial time bit-reductions. In: Proc. of CoCo, pp. 200–207. IEEE Computer Society Press, Los Alamitos (1993)

    Google Scholar 

  15. Ibarra, O.H., Jiang, T., Trân, N., Wang, H.: New decidability results concerning two-way counter machines and applications. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS, vol. 700, pp. 313–324. Springer, Heidelberg (1993)

    Google Scholar 

  16. Ibarra, O.H., Dang, Z.: On the solvability of a class of diophantine equations and applications. Theor. Comput. Sci. 352(1), 342–346 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jančar, P., Kučera, A., Moller, F., Sawa, Z.: DP lower bounds for equivalence-checking and model-checking of one-counter automata. Information Computation 188(1), 1–19 (2004)

    Article  MATH  Google Scholar 

  18. Leroux, J., Sutre, G.: Flat counter automata almost everywhere! In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics in theory of Turing machines. Annals of Mathematics. Second Series 74, 437–455 (1961)

    MathSciNet  Google Scholar 

  20. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  21. Serre, O.: Parity games played on transition graphs of one-counter processes. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 337–351. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Vollmer, H.: A generalized quantifier concept in computational complexity theory. Technical report, arXiv.org (1998), http://arxiv.org/abs/cs.CC/9809115

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Göller, S., Haase, C., Ouaknine, J., Worrell, J. (2010). Model Checking Succinct and Parametric One-Counter Automata. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14162-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14162-1_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14161-4

  • Online ISBN: 978-3-642-14162-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics